On the top-weight rational cohomology of 𝒜g
Geometry & topology, Tome 28 (2024) no. 2, pp. 497-538 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

We compute the top-weight rational cohomology of 𝒜g for g = 5, 6 and 7, and we give some vanishing results for the top-weight rational cohomology of 𝒜8,𝒜9 and 𝒜10. When g = 5 and g = 7, we exhibit nonzero cohomology groups of 𝒜g in odd degree, thus answering a question highlighted by Grushevsky. Our methods develop the relationship between the top-weight cohomology of 𝒜g and the homology of the link of the moduli space of principally polarized tropical abelian varieties of rank g. To compute the latter we use the Voronoi complexes used by Elbaz-Vincent, Gangl and SoulĂ©. In this way, our results make a precise connection between the rational cohomology of Sp ⁥ 2g(â„€) and GL ⁥ g(â„€). Our computations also give natural candidates for compactly supported cohomology classes of 𝒜g in weight 0 that produce the stable cohomology classes of the Satake compactification of 𝒜g in weight 0, under the Gysin spectral sequence for the latter space.

DOI : 10.2140/gt.2024.28.497
Keywords: top-weight cohomology, moduli space of abelian varieties, toroidal compactifications

Brandt, Madeline 1 ; Bruce, Juliette 2 ; Chan, Melody 1 ; Melo, Margarida 3 ; Moreland, Gwyneth 4 ; Wolfe, Corey 5

1 Department of Mathematics, Brown University, Providence, RI, United States
2 Department of Mathematics, University of California, Berkeley, Berkeley, CA, United States, Department of Mathematics, Brown University, Providence, RI, United States
3 Department of Mathematics and Physics, UniversitĂ  Roma Tre, Rome, Italy
4 Department of Mathematics, Harvard University, Cambridge, MA, United States, Department of Mathematics, Statistics and Computer Science, University of Illinois Chicago, Chicago, IL, United States
5 Department of Mathematics, Tulane University, New Orleans, LA, United States
@article{10_2140_gt_2024_28_497,
     author = {Brandt, Madeline and Bruce, Juliette and Chan, Melody and Melo, Margarida and Moreland, Gwyneth and Wolfe, Corey},
     title = {On the top-weight rational cohomology of {\ensuremath{\mathscr{A}}g}},
     journal = {Geometry & topology},
     pages = {497--538},
     year = {2024},
     volume = {28},
     number = {2},
     doi = {10.2140/gt.2024.28.497},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.497/}
}
TY  - JOUR
AU  - Brandt, Madeline
AU  - Bruce, Juliette
AU  - Chan, Melody
AU  - Melo, Margarida
AU  - Moreland, Gwyneth
AU  - Wolfe, Corey
TI  - On the top-weight rational cohomology of 𝒜g
JO  - Geometry & topology
PY  - 2024
SP  - 497
EP  - 538
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.497/
DO  - 10.2140/gt.2024.28.497
ID  - 10_2140_gt_2024_28_497
ER  - 
%0 Journal Article
%A Brandt, Madeline
%A Bruce, Juliette
%A Chan, Melody
%A Melo, Margarida
%A Moreland, Gwyneth
%A Wolfe, Corey
%T On the top-weight rational cohomology of 𝒜g
%J Geometry & topology
%D 2024
%P 497-538
%V 28
%N 2
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.497/
%R 10.2140/gt.2024.28.497
%F 10_2140_gt_2024_28_497
Brandt, Madeline; Bruce, Juliette; Chan, Melody; Melo, Margarida; Moreland, Gwyneth; Wolfe, Corey. On the top-weight rational cohomology of 𝒜g. Geometry & topology, Tome 28 (2024) no. 2, pp. 497-538. doi: 10.2140/gt.2024.28.497

[1] D Abramovich, L Caporaso, S Payne, The tropicalization of the moduli space of curves, Ann. Sci. Éc. Norm. SupĂ©r. 48 (2015) 765 | DOI

[2] V Alexeev, A Brunyate, Extending the Torelli map to toroidal compactifications of Siegel space, Invent. Math. 188 (2012) 175 | DOI

[3] D Allcock, D Corey, S Payne, Tropical moduli spaces as symmetric Δ–complexes, Bull. Lond. Math. Soc. 54 (2022) 193 | DOI

[4] A Ash, D Mumford, M Rapoport, Y Tai, Smooth compactification of locally symmetric varieties, 4, Math. Sci. Press (1975)

[5] W L Baily Jr., A Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. 84 (1966) 442 | DOI

[6] A Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235 | DOI

[7] A Borel, J P Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973) 436 | DOI

[8] S Brannetti, M Melo, F Viviani, On the tropical Torelli map, Adv. Math. 226 (2011) 2546 | DOI

[9] F Brown, Mixed Tate motives over Z, Ann. of Math. 175 (2012) 949 | DOI

[10] B BrĂŒck, J Miller, P Patzt, R J Sroka, J C H Wilson, On the codimension-two cohomology of SLn(Z), preprint (2022)

[11] M Chan, Combinatorics of the tropical Torelli map, Algebra Number Theory 6 (2012) 1133 | DOI

[12] M Chan, S Galatius, S Payne, Tropical curves, graph complexes, and top weight cohomology of Mg, J. Amer. Math. Soc. 34 (2021) 565 | DOI

[13] M Chan, M Melo, F Viviani, Tropical TeichmĂŒller and Siegel spaces, from: "Algebraic and combinatorial aspects of tropical geometry" (editors E BrugallĂ©, M A Cueto, A Dickenstein, E M Feichtner, I Itenberg), Contemp. Math. 589, Amer. Math. Soc. (2013) 45 | DOI

[14] R Charney, R Lee, Cohomology of the Satake compactification, Topology 22 (1983) 389 | DOI

[15] J Chen, E Looijenga, The stable cohomology of the Satake compactification of Ag, Geom. Topol. 21 (2017) 2231 | DOI

[16] T Church, B Farb, A Putman, A stability conjecture for the unstable cohomology of SLnZ, mapping class groups, and Aut(Fn), from: "Algebraic topology: applications and new directions" (editors U Tillmann, S r Galatius, D Sinha), Contemp. Math. 620, Amer. Math. Soc. (2014) 55 | DOI

[17] T Church, A Putman, The codimension-one cohomology of SLnZ, Geom. Topol. 21 (2017) 999 | DOI

[18] D A Cox, J B Little, H K Schenck, Toric varieties, 124, Amer. Math. Soc. (2011) | DOI

[19] P Deligne, ThĂ©orie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. 40 (1971) 5 | DOI

[20] P Deligne, ThĂ©orie de Hodge, III, Inst. Hautes Études Sci. Publ. Math. 44 (1974) 5 | DOI

[21] M Dutour Sikirić, P Elbaz-Vincent, A Kupers, J Martinet, Voronoi complexes in higher dimensions, cohomology of GLN(Z) for N ≄ 8 and the triviality of K8(Z), preprint (2019)

[22] P Elbaz-Vincent, H Gangl, C SoulĂ©, Perfect forms, K–theory and the cohomology of modular groups, Adv. Math. 245 (2013) 587 | DOI

[23] G Faltings, C L Chai, Degeneration of abelian varieties, 22, Springer (1990) | DOI

[24] S Grushevsky, Geometry of Ag and its compactifications, from: "Algebraic geometry, I" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80.1, Amer. Math. Soc. (2009) 193 | DOI

[25] S Grushevsky, K Hulek, O Tommasi, Stable Betti numbers of (partial) toroidal compactifications of the moduli space of abelian varieties, from: "Geometry and physics, II" (editors J E Andersen, A Dancer, O GarcĂ­a-Prada), Oxford Univ. Press (2018) 581 | DOI

[26] S Grushevsky, K Hulek, O Tommasi, Stable cohomology of the perfect cone toroidal compactification of Ag, J. Reine Angew. Math. 741 (2018) 211 | DOI

[27] R Hain, The rational cohomology ring of the moduli space of abelian 3–folds, Math. Res. Lett. 9 (2002) 473 | DOI

[28] F Harary, M J Piff, D J A Welsh, On the automorphism group of a matroid, Discrete Math. 2 (1972) 163 | DOI

[29] G Harder, A Gauss–Bonnet formula for discrete arithmetically defined groups, Ann. Sci. École Norm. Sup. 4 (1971) 409 | DOI

[30] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[31] K Hulek, O Tommasi, Cohomology of the second Voronoi compactification of A4, Doc. Math. 17 (2012) 195 | DOI

[32] K Hulek, O Tommasi, The topology of Ag and its compactifications, from: "Geometry of moduli" (editors J A Christophersen, K Ranestad), Abel Symp. 14, Springer (2018) 135 | DOI

[33] J Igusa, On Siegel modular forms of genus two, Amer. J. Math. 84 (1962) 175 | DOI

[34] D O Jaquet-Chiffelle, ÉnumĂ©ration complĂšte des classes de formes parfaites en dimension 7, Ann. Inst. Fourier (Grenoble) 43 (1993) 21 | DOI

[35] R Lee, R H Szczarba, On the homology and cohomology of congruence subgroups, Invent. Math. 33 (1976) 15 | DOI

[36] R Lee, R H Szczarba, On the torsion in K4(Z) and K5(Z), Duke Math. J. 45 (1978) 101

[37] M Melo, F Viviani, Comparing perfect and 2nd Voronoi decompositions : the matroidal locus, Math. Ann. 354 (2012) 1521 | DOI

[38] Y Namikawa, Toroidal compactification of Siegel spaces, 812, Springer (1980) | DOI

[39] Y Odaka, Tropical geometric compactification of moduli, II : Ag case and holomorphic limits, Int. Math. Res. Not. 2019 (2019) 6614 | DOI

[40] Y Odaka, Y Oshima, Collapsing K3 surfaces, tropical geometry and moduli compactifications of Satake, Morgan–Shalen type, 40, Math. Soc. Japan (2021) | DOI

[41] J G Oxley, Matroid theory, Oxford Univ. Press (1992) | DOI

[42] N I Shepherd-Barron, Perfect forms and the moduli space of abelian varieties, Invent. Math. 163 (2006) 25 | DOI

[43] C SoulĂ©, On the 3–torsion in K4(Z), Topology 39 (2000) 259 | DOI

[44] G Voronoi, Nouvelles applications des paramÚtres continus à la théorie des formes quadratiques, I : Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math. 133 (1908) 97 | DOI

[45] H Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150 | DOI

[46] T Willwacher, M Kontsevich’s graph complex and the Grothendieck–TeichmĂŒller Lie algebra, Invent. Math. 200 (2015) 671 | DOI

Cité par Sources :