Fixed-point-free pseudo-Anosov homeomorphisms, knot Floer homology and the cinquefoil
Geometry & topology, Tome 28 (2024) no. 9, pp. 4337-4381 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

Given any genus-two, hyperbolic, fibered knot in S3 with nonzero fractional Dehn twist coefficient, we show that its pseudo-Anosov representative has a fixed point. Combined with recent work of Baldwin, Hu and Sivek, this proves that knot Floer homology detects the cinquefoil knot T(2,5), and that the cinquefoil is the only genus-two L-space knot in S3. Our results have applications to Floer homology of cyclic branched covers over knots in S3, to SU ⁡ (2)–abelian Dehn surgeries, and to Khovanov and annular Khovanov homology. Along the way to proving our fixed point result, we describe a small list of train tracks carrying all pseudo-Anosov homeomorphisms in most strata on the punctured disk. As a consequence, we find a canonical track τ carrying all pseudo-Anosov homeomorphisms in a particular stratum 𝒬0 on the genus-two surface, and describe every fixed-point-free pseudo-Anosov homeomorphism in 𝒬0.

DOI : 10.2140/gt.2024.28.4337
Keywords: pseudo-Anosov homeomorphism, knot Floer homology, train track, fibered knot, fixed point

Farber, Ethan 1 ; Reinoso, Braeden 1 ; Wang, Luya 2

1 Boston College, Chestnut Hill, MA, United States
2 Department of Mathematics, University of California, Berkeley, Berkeley, CA, United States, Institute for Advanced Study, Princeton, NJ, United States
@article{10_2140_gt_2024_28_4337,
     author = {Farber, Ethan and Reinoso, Braeden and Wang, Luya},
     title = {Fixed-point-free {pseudo-Anosov} homeomorphisms, knot {Floer} homology and the cinquefoil},
     journal = {Geometry & topology},
     pages = {4337--4381},
     year = {2024},
     volume = {28},
     number = {9},
     doi = {10.2140/gt.2024.28.4337},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4337/}
}
TY  - JOUR
AU  - Farber, Ethan
AU  - Reinoso, Braeden
AU  - Wang, Luya
TI  - Fixed-point-free pseudo-Anosov homeomorphisms, knot Floer homology and the cinquefoil
JO  - Geometry & topology
PY  - 2024
SP  - 4337
EP  - 4381
VL  - 28
IS  - 9
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4337/
DO  - 10.2140/gt.2024.28.4337
ID  - 10_2140_gt_2024_28_4337
ER  - 
%0 Journal Article
%A Farber, Ethan
%A Reinoso, Braeden
%A Wang, Luya
%T Fixed-point-free pseudo-Anosov homeomorphisms, knot Floer homology and the cinquefoil
%J Geometry & topology
%D 2024
%P 4337-4381
%V 28
%N 9
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4337/
%R 10.2140/gt.2024.28.4337
%F 10_2140_gt_2024_28_4337
Farber, Ethan; Reinoso, Braeden; Wang, Luya. Fixed-point-free pseudo-Anosov homeomorphisms, knot Floer homology and the cinquefoil. Geometry & topology, Tome 28 (2024) no. 9, pp. 4337-4381. doi: 10.2140/gt.2024.28.4337

[1] J A Baldwin, N Dowlin, A S Levine, T Lidman, R Sazdanovic, Khovanov homology detects the figure-eight knot, Bull. Lond. Math. Soc. 53 (2021) 871 | DOI

[2] J A Baldwin, Y Hu, S Sivek, Khovanov homology and the cinquefoil, J. Eur. Math. Soc. (2024) | DOI

[3] J A Baldwin, Z Li, S Sivek, F Ye, Small Dehn surgery and SU(2), Geom. Topol. 28 (2024) 1891 | DOI

[4] J A Baldwin, S Sivek, Instantons and L-space surgeries, J. Eur. Math. Soc. 25 (2023) 4033 | DOI

[5] M Bestvina, M Handel, Train-tracks for surface homeomorphisms, Topology 34 (1995) 109 | DOI

[6] F Binns, G Martin, Knot Floer homology, link Floer homology and link detection, Algebr. Geom. Topol. 24 (2024) 159 | DOI

[7] M Boileau, S Boyer, C M Gordon, Branched covers of quasi-positive links and L-spaces, J. Topol. 12 (2019) 536 | DOI

[8] M Boileau, S Boyer, C M Gordon, On definite strongly quasipositive links and L-space branched covers, Adv. Math. 357 (2019) 106828 | DOI

[9] J H Cho, J Y Ham, The minimal dilatation of a genus-two surface, Exp. Math. 17 (2008) 257 | DOI

[10] A Cotton-Clay, Symplectic Floer homology of area-preserving surface diffeomorphisms, Geom. Topol. 13 (2009) 2619 | DOI

[11] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012)

[12] P Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008) 1151 | DOI

[13] P Ghiggini, G Spano, Knot Floer homology of fibred knots and Floer homology of surface diffeomorphisms, preprint (2022)

[14] J Y Ham, W T Song, The minimum dilatation of pseudo-Anosov 5–braids, Exp. Math. 16 (2007) 167 | DOI

[15] K Honda, W H Kazez, G Matić, Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math. 169 (2007) 427 | DOI

[16] A Issa, H Turner, Links all of whose cyclic-branched covers are L-spaces, Bull. Lond. Math. Soc. 56 (2024) 566 | DOI

[17] T Ito, K Kawamuro, Essential open book foliations and fractional Dehn twist coefficient, Geom. Dedicata 187 (2017) 17 | DOI

[18] W H Kazez, R Roberts, Fractional Dehn twists in knot theory and contact topology, Algebr. Geom. Topol. 13 (2013) 3603 | DOI

[19] P B Kronheimer, T S Mrowka, Dehn surgery, the fundamental group and SU(2), Math. Res. Lett. 11 (2004) 741 | DOI

[20] P Kronheimer, T Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301

[21] E Lanneau, J L Thiffeault, On the minimum dilatation of pseudo-Anosov homeromorphisms [sic] on surfaces of small genus, Ann. Inst. Fourier (Grenoble) 61 (2011) 105 | DOI

[22] C Livingston, A H Moore, KnotInfo: table of knot invariants, electronic reference (2024)

[23] J Los, Infinite sequence of fixed-point free pseudo-Anosov homeomorphisms, Ergodic Theory Dynam. Systems 30 (2010) 1739 | DOI

[24] H Masur, J Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms, Comment. Math. Helv. 68 (1993) 289 | DOI

[25] J Milnor, W Thurston, On iterated maps of the interval, from: "Dynamical systems" (editor J C Alexander), Lecture Notes in Math. 1342, Springer (1988) 465 | DOI

[26] F Misev, On families of fibred knots with equal Seifert forms, Comm. Anal. Geom. 29 (2021) 465 | DOI

[27] Y Ni, Knot Floer homology and fixed points, preprint (2022)

[28] Y Ni, A note on knot Floer homology and fixed points of monodromy, Peking Math. J. 6 (2023) 635 | DOI

[29] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI

[30] R C Penner, J L Harer, Combinatorics of train tracks, 125, Princeton Univ. Press (1992) | DOI

[31] T Peters, On L-spaces and non left-orderable 3–manifold groups, preprint (2009)

[32] O Plamenevskaya, Braid monodromy, orderings and transverse invariants, Algebr. Geom. Topol. 18 (2018) 3691 | DOI

[33] E Rykken, Expanding factors for pseudo-Anosov homeomorphisms, Michigan Math. J. 46 (1999) 281 | DOI

[34] W T Song, K H Ko, J E Los, Entropies of braids, J. Knot Theory Ramifications 11 (2002) 647 | DOI

[35] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417 | DOI

[36] H Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950) 642 | DOI

Cité par Sources :