Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We extend the theory of dual Coxeter and Artin groups to all rank-three Coxeter systems, beyond the previously studied spherical and affine cases. Using geometric, combinatorial, and topological techniques, we show that rank-three noncrossing partition posets are EL–shellable lattices and give rise to Garside groups isomorphic to the associated standard Artin groups. Within this framework, we prove the conjecture, the triviality of the center, and the solubility of the word problem for rank-three Artin groups. Some of our constructions apply to general Artin groups; we hope they will help develop complete solutions to the conjecture and other open problems in the area.
Delucchi, Emanuele 1 ; Paolini, Giovanni 2 ; Salvetti, Mario 3
@article{GT_2024_28_9_a5, author = {Delucchi, Emanuele and Paolini, Giovanni and Salvetti, Mario}, title = {Dual structures on {Coxeter} and {Artin} groups of rank three}, journal = {Geometry & topology}, pages = {4295--4336}, publisher = {mathdoc}, volume = {28}, number = {9}, year = {2024}, doi = {10.2140/gt.2024.28.4295}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4295/} }
TY - JOUR AU - Delucchi, Emanuele AU - Paolini, Giovanni AU - Salvetti, Mario TI - Dual structures on Coxeter and Artin groups of rank three JO - Geometry & topology PY - 2024 SP - 4295 EP - 4336 VL - 28 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4295/ DO - 10.2140/gt.2024.28.4295 ID - GT_2024_28_9_a5 ER -
%0 Journal Article %A Delucchi, Emanuele %A Paolini, Giovanni %A Salvetti, Mario %T Dual structures on Coxeter and Artin groups of rank three %J Geometry & topology %D 2024 %P 4295-4336 %V 28 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4295/ %R 10.2140/gt.2024.28.4295 %F GT_2024_28_9_a5
Delucchi, Emanuele; Paolini, Giovanni; Salvetti, Mario. Dual structures on Coxeter and Artin groups of rank three. Geometry & topology, Tome 28 (2024) no. 9, pp. 4295-4336. doi : 10.2140/gt.2024.28.4295. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4295/
[1] Generalized noncrossing partitions and combinatorics of Coxeter groups, 949, Amer. Math. Soc. (2009) | DOI
,[2] Shellability of noncrossing partition lattices, Proc. Amer. Math. Soc. 135 (2007) 939 | DOI
, , ,[3] Discrete Morse theory for cellular resolutions, PhD thesis, Philipps-Universität Marburg (2002)
,[4] The dual braid monoid, Ann. Sci. École Norm. Sup. 36 (2003) 647 | DOI
,[5] Non-positively curved aspects of Artin groups of finite type, Geom. Topol. 3 (1999) 269 | DOI
,[6] A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998) 322 | DOI
, , ,[7] Shellable and Cohen–Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980) 159 | DOI
,[8] Groupes et algèbres de Lie, Chapitres 4–6, 1349, Hermann (1972) 320 | DOI
,[9] Metric spaces of non-positive curvature, 319, Springer (1999) | DOI
, ,[10] Sur les groupes de tresses (d’après V I Arnold), from: "Séminaire Bourbaki, 1971/1972", Lecture Notes in Math. 317, Springer (1973)
,[11] Artin–Gruppen und Coxeter–Gruppen, Invent. Math. 17 (1972) 245 | DOI
, ,[12] The K(π,1) problem for the affine Artin group of type Bn and its cohomology, J. Eur. Math. Soc. 12 (2010) 1 | DOI
, , ,[13] Hyperbolic geometry, from: "Flavors of geometry" (editor S Levy), Math. Sci. Res. Inst. Publ. 31, Cambridge Univ. Press (1997) 59
, , , ,[14] On discrete Morse functions and combinatorial decompositions, Discrete Math. 217 (2000) 101 | DOI
,[15] The K(π,1)–problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc. 8 (1995) 597 | DOI
, ,[16] Bestvina’s normal form complex and the homology of Garside groups, Geom. Dedicata 105 (2004) 171 | DOI
, , ,[17] Locally non-spherical Artin groups, J. Algebra 200 (1998) 56 | DOI
,[18] Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. Lond. Math. Soc. 79 (1999) 569 | DOI
, ,[19] Foundations of Garside theory, 22, Eur. Math. Soc. (2015) | DOI
, , , , ,[20] Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972) 273 | DOI
,[21] Combinatorics of covers of complexified hyperplane arrangements, from: "Arrangements, local systems and singularities" (editors F El Zein, A I Suciu, M Tosun, A M Uludağ, S Yuzvinsky), Progr. Math. 283, Birkhäuser (2010) 1 | DOI
,[22] Hecke algebras and shellings of Bruhat intervals, Compos. Math. 89 (1993) 91
,[23] Morse theory for cell complexes, Adv. Math. 134 (1998) 90 | DOI
,[24] The braid groups, Math. Scand. 10 (1962) 119 | DOI
, ,[25] The braid group and other groups, Q. J. Math. 20 (1969) 235 | DOI
,[26] Basic questions on Artin–Tits groups, from: "Configuration spaces" (editors A Bjorner, F Cohen, C De Concini, C Procesi, M Salvetti), CRM Series 14, Ed. Norm. (2012) 299 | DOI
, ,[27] Algebraic topology, Cambridge Univ. Press (2002)
,[28] Hyperplane complements of large type, Invent. Math. 79 (1985) 375 | DOI
,[29] Reflection groups and Coxeter groups, 29, Cambridge Univ. Press (1990) | DOI
,[30] Noncrossing partitions and representations of quivers, Compos. Math. 145 (2009) 1533 | DOI
, ,[31] Combinatorial algebraic topology, 21, Springer (2008) | DOI
,[32] An introduction to Garside structures, preprint (2005)
,[33] Dual euclidean Artin groups and the failure of the lattice property, J. Algebra 437 (2015) 308 | DOI
,[34] Artin groups of Euclidean type, Invent. Math. 210 (2017) 231 | DOI
, ,[35] Coxeter groups, Salem numbers and the Hilbert metric, Publ. Math. Inst. Hautes Études Sci. 95 (2002) 151 | DOI
,[36] Das K(π, 1)–Problem für die affinen Wurzelsysteme vom Typ An,Cn, Math. Z. 168 (1979) 143 | DOI
,[37] The dual approach to the K(π,1) conjecture, preprint (2021)
,[38] Proof of the K(π,1) conjecture for affine Artin groups, Invent. Math. 224 (2021) 487 | DOI
, ,[39] Irreducible Coxeter groups, Int. J. Algebra Comput. 17 (2007) 427 | DOI
,[40] K(π,1) conjecture for Artin groups, Ann. Fac. Sci. Toulouse Math. 23 (2014) 361 | DOI
,[41] Topology of the complement of real hyperplanes in CN, Invent. Math. 88 (1987) 603 | DOI
,[42] The homotopy type of Artin groups, Math. Res. Lett. 1 (1994) 565 | DOI
,[43] Enumerative combinatorics, Springer (1986) | DOI
,[44] The homotopy type of complex hyperplane complements, PhD thesis, Radboud University (1983)
,[45] Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 1072
,Cité par Sources :