Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that for a closed Legendrian submanifold of dimension with a loose chart of size , any Legendrian isotopy starting at can be –approximated by a Legendrian isotopy with energy arbitrarily close to . This in particular implies that the displacement energy of loose displaceable Legendrians is bounded by half the size of its smallest loose chart, which proves a conjecture of Dimitroglou Rizell and Sullivan (2020).
Nakamura, Lukas 1
@article{GT_2024_28_9_a3, author = {Nakamura, Lukas}, title = {Small-energy isotopies of loose {Legendrian} submanifolds}, journal = {Geometry & topology}, pages = {4233--4255}, publisher = {mathdoc}, volume = {28}, number = {9}, year = {2024}, doi = {10.2140/gt.2024.28.4233}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4233/} }
Nakamura, Lukas. Small-energy isotopies of loose Legendrian submanifolds. Geometry & topology, Tome 28 (2024) no. 9, pp. 4233-4255. doi : 10.2140/gt.2024.28.4233. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4233/
[1] The structure of classical diffeomorphism groups, 400, Kluwer Acad. (1997) | DOI
,[2] The persistence of the Chekanov–Eliashberg algebra, Selecta Math. 26 (2020) 69 | DOI
, ,[3] The persistence of a relative Rabinowitz–Floer complex, preprint (2021)
, ,[4] C0–limits of Legendrians and positive loops, preprint (2022)
, ,[5] An introduction to contact topology, 109, Cambridge Univ. Press (2008) | DOI
,[6] Loose Legendrian embeddings in high dimensional contact manifolds, PhD thesis, Stanford University (2012)
,[7] Geometry and analysis of contact instantons and entanglement of Legendrian links, I, preprint (2021)
,[8] Chekanov’s dichotomy in contact topology, Math. Res. Lett. 27 (2020) 1165 | DOI
, ,[9] The Hofer norm of a contactomorphism, J. Symplectic Geom. 15 (2017) 1173 | DOI
,Cité par Sources :