Small-energy isotopies of loose Legendrian submanifolds
Geometry & topology, Tome 28 (2024) no. 9, pp. 4233-4255.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that for a closed Legendrian submanifold L of dimension n 2 with a loose chart of size η, any Legendrian isotopy starting at L can be C0–approximated by a Legendrian isotopy with energy arbitrarily close to 1 2η. This in particular implies that the displacement energy of loose displaceable Legendrians is bounded by half the size of its smallest loose chart, which proves a conjecture of Dimitroglou Rizell and Sullivan (2020).

DOI : 10.2140/gt.2024.28.4233
Keywords: Legendrian submanifolds, loose Legendrians, Shelukhin–Chekanov–Hofer energy, displacement of Legendrian submanifolds

Nakamura, Lukas 1

1 Department of Mathematics, Uppsala University, Uppsala, Sweden
@article{GT_2024_28_9_a3,
     author = {Nakamura, Lukas},
     title = {Small-energy isotopies of loose {Legendrian} submanifolds},
     journal = {Geometry & topology},
     pages = {4233--4255},
     publisher = {mathdoc},
     volume = {28},
     number = {9},
     year = {2024},
     doi = {10.2140/gt.2024.28.4233},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4233/}
}
TY  - JOUR
AU  - Nakamura, Lukas
TI  - Small-energy isotopies of loose Legendrian submanifolds
JO  - Geometry & topology
PY  - 2024
SP  - 4233
EP  - 4255
VL  - 28
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4233/
DO  - 10.2140/gt.2024.28.4233
ID  - GT_2024_28_9_a3
ER  - 
%0 Journal Article
%A Nakamura, Lukas
%T Small-energy isotopies of loose Legendrian submanifolds
%J Geometry & topology
%D 2024
%P 4233-4255
%V 28
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4233/
%R 10.2140/gt.2024.28.4233
%F GT_2024_28_9_a3
Nakamura, Lukas. Small-energy isotopies of loose Legendrian submanifolds. Geometry & topology, Tome 28 (2024) no. 9, pp. 4233-4255. doi : 10.2140/gt.2024.28.4233. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4233/

[1] A Banyaga, The structure of classical diffeomorphism groups, 400, Kluwer Acad. (1997) | DOI

[2] G Dimitroglou Rizell, M G Sullivan, The persistence of the Chekanov–Eliashberg algebra, Selecta Math. 26 (2020) 69 | DOI

[3] G Dimitroglou Rizell, M G Sullivan, The persistence of a relative Rabinowitz–Floer complex, preprint (2021)

[4] G Dimitroglou Rizell, M G Sullivan, C0–limits of Legendrians and positive loops, preprint (2022)

[5] H Geiges, An introduction to contact topology, 109, Cambridge Univ. Press (2008) | DOI

[6] E Murphy, Loose Legendrian embeddings in high dimensional contact manifolds, PhD thesis, Stanford University (2012)

[7] Y G Oh, Geometry and analysis of contact instantons and entanglement of Legendrian links, I, preprint (2021)

[8] D Rosen, J Zhang, Chekanov’s dichotomy in contact topology, Math. Res. Lett. 27 (2020) 1165 | DOI

[9] E Shelukhin, The Hofer norm of a contactomorphism, J. Symplectic Geom. 15 (2017) 1173 | DOI

Cité par Sources :