Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For a large class of –manifolds with taut foliations, we construct an action of on by orientation-preserving homeomorphisms which captures the transverse geometry of the leaves. This action is complementary to Thurston’s universal circle. Applications include the left-orderability of the fundamental groups of every nontrivial surgery on the figure-eight knot. Our techniques also apply to at least 2598 manifolds representing 44.7% of the non-L-space rational homology spheres in the Hodgson–Weeks census of small closed hyperbolic –manifolds.
Zung, Jonathan 1
@article{GT_2024_28_9_a2, author = {Zung, Jonathan}, title = {Taut foliations, left orders, and {pseudo-Anosov} mapping tori}, journal = {Geometry & topology}, pages = {4191--4232}, publisher = {mathdoc}, volume = {28}, number = {9}, year = {2024}, doi = {10.2140/gt.2024.28.4191}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4191/} }
Zung, Jonathan. Taut foliations, left orders, and pseudo-Anosov mapping tori. Geometry & topology, Tome 28 (2024) no. 9, pp. 4191-4232. doi : 10.2140/gt.2024.28.4191. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4191/
[1] Anosov flows in dimension 3 : preliminary version, preprint (2017)
,[2] Flipper, computational software (2013)
,[3] Censuses, data accompanying the Flipper program (2024)
, ,[4] On L-spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 | DOI
, , ,[5] Taut foliations in branched cyclic covers and left-orderable groups, Trans. Amer. Math. Soc. 372 (2019) 7921 | DOI
, ,[6] Orderable 3–manifold groups, Ann. Inst. Fourier (Grenoble) 55 (2005) 243 | DOI
, , ,[7] Problems in foliations and laminations of 3–manifolds, from: "Topology and geometry of manifolds" (editors G Matić, C McCrory), Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 297 | DOI
,[8] Foliations and the geometry of 3–manifolds, Oxford Univ. Press (2007)
,[9] Laminations and groups of homeomorphisms of the circle, Invent. Math. 152 (2003) 149 | DOI
, ,[10] Graph manifolds, left-orderability and amalgamation, Algebr. Geom. Topol. 13 (2013) 2347 | DOI
, , ,[11] Orderability and Dehn filling, Geom. Topol. 22 (2018) 1405 | DOI
, ,[12] SnapPy, a computer program for studying the geometry and topology of 3–manifolds
, , , ,[13] Floer homology, group orderability, and taut foliations of hyperbolic 3–manifolds, Geom. Topol. 24 (2020) 2075 | DOI
,[14] Transverse foliations of Seifert bundles and self-homeomorphism of the circle, Comment. Math. Helv. 56 (1981) 638 | DOI
, , ,[15] The structure of branching in Anosov flows of 3–manifolds, Comment. Math. Helv. 73 (1998) 259 | DOI
,[16] Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983) 299 | DOI
,[17] Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445
,[18] Symmetries, isometries and length spectra of closed hyperbolic three-manifolds, Exp. Math. 3 (1994) 261 | DOI
, ,[19] Euler class of taut foliations and Dehn filling, (2019)
,[20] Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997) 931 | DOI
, ,[21] Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI
, ,[22] The topology of foliations, Tr. Mosk. Mat. Obs. 14 (1965) 248
,[23] Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI
, ,[24] Combinatorics of train tracks, 125, Princeton Univ. Press (1992) | DOI
, ,[25] Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, Inst. Hautes Études Sci. Publ. Math. 43 (1974) 101 | DOI
,[26] A norm for the homology of 3–manifolds, from: "Two papers", Mem. Amer. Math. Soc. 339, Amer. Math. Soc. (1986) 99
,[27] Three-manifolds, foliations and circles, I, preprint (1997)
,[28] Flat surfaces, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437
,Cité par Sources :