Taut foliations, left orders, and pseudo-Anosov mapping tori
Geometry & topology, Tome 28 (2024) no. 9, pp. 4191-4232.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For a large class of 3–manifolds with taut foliations, we construct an action of π1(M) on by orientation-preserving homeomorphisms which captures the transverse geometry of the leaves. This action is complementary to Thurston’s universal circle. Applications include the left-orderability of the fundamental groups of every nontrivial surgery on the figure-eight knot. Our techniques also apply to at least 2598 manifolds representing 44.7% of the non-L-space rational homology spheres in the Hodgson–Weeks census of small closed hyperbolic 3–manifolds.

DOI : 10.2140/gt.2024.28.4191
Keywords: orderable groups, taut foliations, pseudo-Anosov flows

Zung, Jonathan 1

1 Department of Mathematics, Princeton University, Princeton, NJ, United States, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
@article{GT_2024_28_9_a2,
     author = {Zung, Jonathan},
     title = {Taut foliations, left orders, and {pseudo-Anosov} mapping tori},
     journal = {Geometry & topology},
     pages = {4191--4232},
     publisher = {mathdoc},
     volume = {28},
     number = {9},
     year = {2024},
     doi = {10.2140/gt.2024.28.4191},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4191/}
}
TY  - JOUR
AU  - Zung, Jonathan
TI  - Taut foliations, left orders, and pseudo-Anosov mapping tori
JO  - Geometry & topology
PY  - 2024
SP  - 4191
EP  - 4232
VL  - 28
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4191/
DO  - 10.2140/gt.2024.28.4191
ID  - GT_2024_28_9_a2
ER  - 
%0 Journal Article
%A Zung, Jonathan
%T Taut foliations, left orders, and pseudo-Anosov mapping tori
%J Geometry & topology
%D 2024
%P 4191-4232
%V 28
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4191/
%R 10.2140/gt.2024.28.4191
%F GT_2024_28_9_a2
Zung, Jonathan. Taut foliations, left orders, and pseudo-Anosov mapping tori. Geometry & topology, Tome 28 (2024) no. 9, pp. 4191-4232. doi : 10.2140/gt.2024.28.4191. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4191/

[1] T Barthelmé, Anosov flows in dimension 3 : preliminary version, preprint (2017)

[2] M Bell, Flipper, computational software (2013)

[3] M C Bell, N Dunfield, Censuses, data accompanying the Flipper program (2024)

[4] S Boyer, C M Gordon, L Watson, On L-spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 | DOI

[5] S Boyer, Y Hu, Taut foliations in branched cyclic covers and left-orderable groups, Trans. Amer. Math. Soc. 372 (2019) 7921 | DOI

[6] S Boyer, D Rolfsen, B Wiest, Orderable 3–manifold groups, Ann. Inst. Fourier (Grenoble) 55 (2005) 243 | DOI

[7] D Calegari, Problems in foliations and laminations of 3–manifolds, from: "Topology and geometry of manifolds" (editors G Matić, C McCrory), Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 297 | DOI

[8] D Calegari, Foliations and the geometry of 3–manifolds, Oxford Univ. Press (2007)

[9] D Calegari, N M Dunfield, Laminations and groups of homeomorphisms of the circle, Invent. Math. 152 (2003) 149 | DOI

[10] A Clay, T Lidman, L Watson, Graph manifolds, left-orderability and amalgamation, Algebr. Geom. Topol. 13 (2013) 2347 | DOI

[11] M Culler, N M Dunfield, Orderability and Dehn filling, Geom. Topol. 22 (2018) 1405 | DOI

[12] M Culler, N M Dunfield, M Goerner, J R Weeks, SnapPy, a computer program for studying the geometry and topology of 3–manifolds

[13] N M Dunfield, Floer homology, group orderability, and taut foliations of hyperbolic 3–manifolds, Geom. Topol. 24 (2020) 2075 | DOI

[14] D Eisenbud, U Hirsch, W Neumann, Transverse foliations of Seifert bundles and self-homeomorphism of the circle, Comment. Math. Helv. 56 (1981) 638 | DOI

[15] S R Fenley, The structure of branching in Anosov flows of 3–manifolds, Comment. Math. Helv. 73 (1998) 259 | DOI

[16] D Fried, Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983) 299 | DOI

[17] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445

[18] C D Hodgson, J R Weeks, Symmetries, isometries and length spectra of closed hyperbolic three-manifolds, Exp. Math. 3 (1994) 261 | DOI

[19] Y Hu, Euler class of taut foliations and Dehn filling, (2019)

[20] P B Kronheimer, T S Mrowka, Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997) 931 | DOI

[21] P Kronheimer, T Mrowka, Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI

[22] S P Novikov, The topology of foliations, Tr. Mosk. Mat. Obs. 14 (1965) 248

[23] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI

[24] R C Penner, J L Harer, Combinatorics of train tracks, 125, Princeton Univ. Press (1992) | DOI

[25] R Roussarie, Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, Inst. Hautes Études Sci. Publ. Math. 43 (1974) 101 | DOI

[26] W P Thurston, A norm for the homology of 3–manifolds, from: "Two papers", Mem. Amer. Math. Soc. 339, Amer. Math. Soc. (1986) 99

[27] W P Thurston, Three-manifolds, foliations and circles, I, preprint (1997)

[28] A Zorich, Flat surfaces, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437

Cité par Sources :