Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We associate several invariants to a knot in an integer homology –sphere using singular instanton gauge theory. There is a space of framed singular connections for such a knot, equipped with a circle action and an equivariant Chern–Simons functional, and our constructions are morally derived from the associated equivariant Morse chain complexes. In particular, we construct a triad of groups analogous to the knot Floer homology package in Heegaard Floer homology, several Frøyshov-type invariants which are concordance invariants, and more. The behavior of our constructions under connected sums are determined. We recover most of Kronheimer and Mrowka’s singular instanton homology constructions from our invariants. Finally, the ADHM description of the moduli space of instantons on the –sphere can be used to give a concrete characterization of the moduli spaces involved in the invariants of spherical knots, and we demonstrate this point in several examples.
Daemi, Aliakbar 1 ; Scaduto, Christopher 2
@article{GT_2024_28_9_a1, author = {Daemi, Aliakbar and Scaduto, Christopher}, title = {Equivariant aspects of singular instanton {Floer} homology}, journal = {Geometry & topology}, pages = {4057--4190}, publisher = {mathdoc}, volume = {28}, number = {9}, year = {2024}, doi = {10.2140/gt.2024.28.4057}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4057/} }
TY - JOUR AU - Daemi, Aliakbar AU - Scaduto, Christopher TI - Equivariant aspects of singular instanton Floer homology JO - Geometry & topology PY - 2024 SP - 4057 EP - 4190 VL - 28 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4057/ DO - 10.2140/gt.2024.28.4057 ID - GT_2024_28_9_a1 ER -
Daemi, Aliakbar; Scaduto, Christopher. Equivariant aspects of singular instanton Floer homology. Geometry & topology, Tome 28 (2024) no. 9, pp. 4057-4190. doi : 10.2140/gt.2024.28.4057. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.4057/
[1] Equivariant Floer groups for binary polyhedral spaces, Math. Ann. 302 (1995) 295 | DOI
,[2] Heat kernels and Dirac operators, 298, Springer (1992) | DOI
, , ,[3] Floer’s work on instanton homology, knots and surgery, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 195 | DOI
, ,[4] Equivariant Casson invariants via gauge theory, J. Reine Angew. Math. 541 (2001) 143 | DOI
, ,[5] Instanton Floer homology for knots via 3–orbifolds, J. Differential Geom. 51 (1999) 149
, ,[6] Surgery, polygons and SU(N)–Floer homology, J. Topol. 13 (2020) 576 | DOI
, , ,[7] Chern–Simons functional and the homology cobordism group, Duke Math. J. 169 (2020) 2827 | DOI
,[8] The orientation of Yang–Mills moduli spaces and 4–manifold topology, J. Differential Geom. 26 (1987) 397
,[9] Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI
,[10] The geometry of four-manifolds, Oxford Univ. Press (1990)
, ,[11] Geometric orbifolds, Rev. Mat. Univ. Complut. Madrid 1 (1988) 67
,[12] A generalization of the Tristram–Levine knot signatures as a singular Furuta–Ohta invariant for tori, preprint (2019)
,[13] Instanton homology of Seifert fibred homology three spheres, Proc. Lond. Math. Soc. 61 (1990) 109 | DOI
, ,[14] An instanton-invariant for 3–manifolds, Comm. Math. Phys. 118 (1988) 215 | DOI
,[15] Equivariant aspects of Yang–Mills Floer theory, Topology 41 (2002) 525 | DOI
,[16] Monopole Floer homology for rational homology 3–spheres, Duke Math. J. 155 (2010) 519 | DOI
,[17] Floer homology of connected sum of homology 3–spheres, Topology 35 (1996) 89 | DOI
,[18] Za–invariant SU(2) instantons over the four sphere, from: "Geometry of low-dimensional manifolds, I" (editors S K Donaldson, C B Thomas), Lond. Math. Soc. Lect. Note Ser. 150, Cambridge Univ. Press (1990) 161 | DOI
,[19] Invariant instantons on S4, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37 (1990) 585
, ,[20] A connected sum formula for involutive Heegaard Floer homology, Selecta Math. 24 (2018) 1183 | DOI
, , ,[21] Applications of involutive Heegaard Floer homology, J. Inst. Math. Jussieu 20 (2021) 187 | DOI
, , ,[22] Flat connections, the Alexander invariant, and Casson’s invariant, Comm. Anal. Geom. 5 (1997) 93 | DOI
,[23] On knots, 115, Princeton Univ. Press (1987) | DOI
,[24] Representations of knot groups in SU(2), Trans. Amer. Math. Soc. 326 (1991) 795 | DOI
,[25] An obstruction to removing intersection points in immersed surfaces, Topology 36 (1997) 931 | DOI
,[26] Gauge theory for embedded surfaces, I, Topology 32 (1993) 773 | DOI
, ,[27] Witten’s conjecture and property P, Geom. Topol. 8 (2004) 295 | DOI
, ,[28] Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI
, ,[29] Instanton Floer homology and the Alexander polynomial, Algebr. Geom. Topol. 10 (2010) 1715 | DOI
, ,[30] Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301
, ,[31] Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011) 97 | DOI
, ,[32] Knot homology groups from instantons, J. Topol. 4 (2011) 835 | DOI
, ,[33] Gauge theory and Rasmussen’s invariant, J. Topol. 6 (2013) 659 | DOI
, ,[34] A deformation of instanton homology for webs, Geom. Topol. 23 (2019) 1491 | DOI
, ,[35] Tait colorings, and an instanton homology for webs and foams, J. Eur. Math. Soc. 21 (2019) 55 | DOI
, ,[36] Instantons and Bar-Natan homology, Compos. Math. 157 (2021) 484 | DOI
, ,[37] Instantons and some concordance invariants of knots, J. Lond. Math. Soc. 104 (2021) 541 | DOI
, ,[38] Knot homologies in monopole and instanton theories via sutures, J. Symplectic Geom. 19 (2021) 1339 | DOI
,[39] Instanton homology and the Alexander polynomial, Proc. Amer. Math. Soc. 138 (2010) 3759 | DOI
,[40] A knot invariant via representation spaces, J. Differential Geom. 35 (1992) 337
,[41] Signatures of iterated torus knots, from: "Topology of low-dimensional manifolds" (editor R A Fenn), Lecture Notes in Math. 722, Springer (1979) 71 | DOI
,[42] Pin(2)–equivariant Seiberg–Witten Floer homology and the triangulation conjecture, J. Amer. Math. Soc. 29 (2016) 147 | DOI
,[43] A combinatorial description of knot Floer homology, Ann. of Math. 169 (2009) 633 | DOI
, , ,[44] Equivariant instanton homology, PhD thesis, University of California, Los Angeles (2019)
,[45] Filtered instanton Floer homology and the homology cobordism group, J. Eur. Math. Soc. (2023) | DOI
, , ,[46] Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179 | DOI
, ,[47] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI
, ,[48] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI
, ,[49] Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008) 101 | DOI
, ,[50] Bordered knot algebras with matchings, Quantum Topol. 10 (2019) 481 | DOI
, ,[51] Link homology and equivariant gauge theory, Algebr. Geom. Topol. 17 (2017) 2635 | DOI
, ,[52] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[53] Two-dimensional submanifolds of four-dimensional manifolds, Funkcional. Anal. i Priložen. 5 (1971) 48
,[54] Instanton Floer homology for lens spaces, Math. Z. 273 (2013) 237 | DOI
,[55] Floer homology of Brieskorn homology spheres, J. Differential Geom. 53 (1999) 15
,[56] Instantons and odd Khovanov homology, J. Topol. 8 (2015) 744 | DOI
,[57] Localization for involutions in Floer cohomology, Geom. Funct. Anal. 20 (2010) 1464 | DOI
, ,[58] Applications of Pin(2)–equivariant Seiberg–Witten Floer homology, PhD thesis, University of California, Los Angeles (2017)
,[59] Self-dual Yang–Mills connections on non-self-dual 4–manifolds, J. Differential Geom. 17 (1982) 139
,[60] Casson’s invariant and gauge theory, J. Differential Geom. 31 (1990) 547
,[61] Homotopy limits and colimits, from: "Proceedings of the International Symposium on Topology and its Applications" (editor D R Kurepa), Savez Društava Mat. Fizi. Astronoma (1973) 235
,[62] Morse theory for G–manifolds, Bull. Amer. Math. Soc. 71 (1965) 384 | DOI
,[63] Earrings, sutures, and pointed links, Int. Math. Res. Not. 2021 (2021) 13570 | DOI
,Cité par Sources :