Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a Gromov–Hausdorff converging sequence of Riemannian manifolds with , , and such that the are all homeomorphic to tori . Then is homeomorphic to a –dimensional torus for some . This answers a question of Petrunin in the affirmative. We show this result is false if the are homeomorphic to tori, but are only assumed to be Alexandrov spaces. When , we prove the same toric stability under the weaker condition .
Bruè, Elia 1 ; Naber, Aaron 2 ; Semola, Daniele 3
@article{GT_2024_28_8_a9, author = {Bru\`e, Elia and Naber, Aaron and Semola, Daniele}, title = {Stability of tori under lower sectional curvature}, journal = {Geometry & topology}, pages = {3961--3972}, publisher = {mathdoc}, volume = {28}, number = {8}, year = {2024}, doi = {10.2140/gt.2024.28.3961}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3961/} }
TY - JOUR AU - Bruè, Elia AU - Naber, Aaron AU - Semola, Daniele TI - Stability of tori under lower sectional curvature JO - Geometry & topology PY - 2024 SP - 3961 EP - 3972 VL - 28 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3961/ DO - 10.2140/gt.2024.28.3961 ID - GT_2024_28_8_a9 ER -
Bruè, Elia; Naber, Aaron; Semola, Daniele. Stability of tori under lower sectional curvature. Geometry & topology, Tome 28 (2024) no. 8, pp. 3961-3972. doi : 10.2140/gt.2024.28.3961. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3961/
[1] Some theorems on transformation groups, Ann. of Math. 67 (1958) 104 | DOI
,[2] Introduction to compact transformation groups, 46, Academic (1972)
,[3] Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992) 327 | DOI
, , ,[4] Collapsing Riemannian manifolds while keeping their curvature bounded, I, J. Differential Geom. 23 (1986) 309
, ,[5] Collapsing Riemannian manifolds while keeping their curvature bounded, II, J. Differential Geom. 32 (1990) 269
, ,[6] Ricci curvature and volume convergence, Ann. of Math. 145 (1997) 477 | DOI
,[7] Transformation groups on a K(π, 1), I, Michigan Math. J. 6 (1959) 405
, ,[8] Actions of compact Lie groups on aspherical manifolds, from: "Topology of manifolds" (editors J C Cantrell, C H Edwards Jr.), Markham (1970) 227
, ,[9] Decompositions of manifolds, 124, Academic (1986)
,[10] Topology of 4–manifolds, 39, Princeton Univ. Press (1990)
, ,[11] Collapsing Riemannian manifolds to ones of lower dimensions, J. Differential Geom. 25 (1987) 139
,[12] A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters, J. Differential Geom. 28 (1988) 1
,[13] A compactness theorem of a set of aspherical Riemannian orbifolds, from: "A fête of topology" (editors Y Matsumoto, T Mizutani, S Morita), Academic (1988) 391 | DOI
,[14] Collapsing Riemannian manifolds to ones with lower dimension, II, J. Math. Soc. Japan 41 (1989) 333 | DOI
,[15] Cohomogeneity one Alexandrov spaces, Transform. Groups 16 (2011) 91 | DOI
, ,[16] Almost flat manifolds, J. Differential Geom. 13 (1978) 231
,[17] Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1
,[18] Spin and scalar curvature in the presence of a fundamental group, I, Ann. of Math. 111 (1980) 209 | DOI
, ,[19] Volumes of balls in large Riemannian manifolds, Ann. of Math. 173 (2011) 51 | DOI
,[20] Orientation and symmetries of Alexandrov spaces with applications in positive curvature, J. Geom. Anal. 27 (2017) 1636 | DOI
, ,[21] On homotopy tori, II, Bull. Lond. Math. Soc. 1 (1969) 341 | DOI
, ,[22] Regularity of limits of noncollapsing sequences of manifolds, Geom. Funct. Anal. 12 (2002) 121 | DOI
,[23] Restrictions on collapsing with a lower sectional curvature bound, Math. Z. 249 (2005) 519 | DOI
,[24] Perelman’s stability theorem, from: "Surveys in differential geometry, XI : Metric and comparison geometry" (editors J Cheeger, K Grove), International (2007) 103 | DOI
,[25] Torus cannot collapse to a segment, J. Geom. 111 (2020) 13 | DOI
,[26] Mixed sectional–Ricci curvature obstructions on tori, J. Topol. Anal. 12 (2020) 713 | DOI
, ,[27] Curvature tensor of smoothable Alexandrov spaces, Geom. Topol. 28 (2024) 3869 | DOI
, ,[28] On lattice points in n–dimensional star bodies, I : Existence theorems, Proc. Roy. Soc. Lond. Ser. A 187 (1946) 151 | DOI
,[29] Alexandrov spaces with curvatures bounded from below, II, preprint (1991)
,[30] Elements of Morse theory on Aleksandrov spaces, Algebra i Analiz 5 (1993) 232
,[31] The entropy formula for the Ricci flow and its geometric applications, preprint (2002)
,[32] Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint (2003)
,[33] Ricci flow with surgery on three-manifolds, preprint (2003)
,[34] Classification of the actions of the circle on 3–manifolds, Trans. Amer. Math. Soc. 131 (1968) 51 | DOI
,[35] On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979) 159 | DOI
, ,[36] Collapsing three-manifolds under a lower curvature bound, J. Differential Geom. 56 (2000) 1
, ,[37] Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math. 662 (2012) 59 | DOI
,[38] Elements of homotopy theory, 61, Springer (1978) | DOI
,[39] Collapsing and pinching under a lower curvature bound, Ann. of Math. 133 (1991) 317 | DOI
,[40] Tori can’t collapse to an interval, Electron. Res. Arch. 29 (2021) 2637 | DOI
,[41] First Betti number and collapse, preprint (2022)
,Cité par Sources :