Stability of tori under lower sectional curvature
Geometry & topology, Tome 28 (2024) no. 8, pp. 3961-3972.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let (Min,gi) GH(X,dX) be a Gromov–Hausdorff converging sequence of Riemannian manifolds with Secgi 1, diam(Mi) D, and such that the Min are all homeomorphic to tori Tn. Then X is homeomorphic to a k–dimensional torus Tk for some 0 k n. This answers a question of Petrunin in the affirmative. We show this result is false if the Min are homeomorphic to tori, but are only assumed to be Alexandrov spaces. When n = 3, we prove the same toric stability under the weaker condition Ricgi 2.

DOI : 10.2140/gt.2024.28.3961
Keywords: sectional, curvature, tori, stability

Bruè, Elia 1 ; Naber, Aaron 2 ; Semola, Daniele 3

1 Università Bocconi, Milan, Italy
2 Northwestern University, Evanston, IL, United States
3 ETH, Zurich, Switzerland
@article{GT_2024_28_8_a9,
     author = {Bru\`e, Elia and Naber, Aaron and Semola, Daniele},
     title = {Stability of tori under lower sectional curvature},
     journal = {Geometry & topology},
     pages = {3961--3972},
     publisher = {mathdoc},
     volume = {28},
     number = {8},
     year = {2024},
     doi = {10.2140/gt.2024.28.3961},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3961/}
}
TY  - JOUR
AU  - Bruè, Elia
AU  - Naber, Aaron
AU  - Semola, Daniele
TI  - Stability of tori under lower sectional curvature
JO  - Geometry & topology
PY  - 2024
SP  - 3961
EP  - 3972
VL  - 28
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3961/
DO  - 10.2140/gt.2024.28.3961
ID  - GT_2024_28_8_a9
ER  - 
%0 Journal Article
%A Bruè, Elia
%A Naber, Aaron
%A Semola, Daniele
%T Stability of tori under lower sectional curvature
%J Geometry & topology
%D 2024
%P 3961-3972
%V 28
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3961/
%R 10.2140/gt.2024.28.3961
%F GT_2024_28_8_a9
Bruè, Elia; Naber, Aaron; Semola, Daniele. Stability of tori under lower sectional curvature. Geometry & topology, Tome 28 (2024) no. 8, pp. 3961-3972. doi : 10.2140/gt.2024.28.3961. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3961/

[1] G E Bredon, Some theorems on transformation groups, Ann. of Math. 67 (1958) 104 | DOI

[2] G E Bredon, Introduction to compact transformation groups, 46, Academic (1972)

[3] J Cheeger, K Fukaya, M Gromov, Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992) 327 | DOI

[4] J Cheeger, M Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded, I, J. Differential Geom. 23 (1986) 309

[5] J Cheeger, M Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded, II, J. Differential Geom. 32 (1990) 269

[6] T H Colding, Ricci curvature and volume convergence, Ann. of Math. 145 (1997) 477 | DOI

[7] P E Conner, D Montgomery, Transformation groups on a K(π, 1), I, Michigan Math. J. 6 (1959) 405

[8] P E Conner, F Raymond, Actions of compact Lie groups on aspherical manifolds, from: "Topology of manifolds" (editors J C Cantrell, C H Edwards Jr.), Markham (1970) 227

[9] R J Daverman, Decompositions of manifolds, 124, Academic (1986)

[10] M H Freedman, F Quinn, Topology of 4–manifolds, 39, Princeton Univ. Press (1990)

[11] K Fukaya, Collapsing Riemannian manifolds to ones of lower dimensions, J. Differential Geom. 25 (1987) 139

[12] K Fukaya, A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters, J. Differential Geom. 28 (1988) 1

[13] K Fukaya, A compactness theorem of a set of aspherical Riemannian orbifolds, from: "A fête of topology" (editors Y Matsumoto, T Mizutani, S Morita), Academic (1988) 391 | DOI

[14] K Fukaya, Collapsing Riemannian manifolds to ones with lower dimension, II, J. Math. Soc. Japan 41 (1989) 333 | DOI

[15] F Galaz-Garcia, C Searle, Cohomogeneity one Alexandrov spaces, Transform. Groups 16 (2011) 91 | DOI

[16] M Gromov, Almost flat manifolds, J. Differential Geom. 13 (1978) 231

[17] M Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1

[18] M Gromov, H B Lawson Jr., Spin and scalar curvature in the presence of a fundamental group, I, Ann. of Math. 111 (1980) 209 | DOI

[19] L Guth, Volumes of balls in large Riemannian manifolds, Ann. of Math. 173 (2011) 51 | DOI

[20] J Harvey, C Searle, Orientation and symmetries of Alexandrov spaces with applications in positive curvature, J. Geom. Anal. 27 (2017) 1636 | DOI

[21] W C Hsiang, C T C Wall, On homotopy tori, II, Bull. Lond. Math. Soc. 1 (1969) 341 | DOI

[22] V Kapovitch, Regularity of limits of noncollapsing sequences of manifolds, Geom. Funct. Anal. 12 (2002) 121 | DOI

[23] V Kapovitch, Restrictions on collapsing with a lower sectional curvature bound, Math. Z. 249 (2005) 519 | DOI

[24] V Kapovitch, Perelman’s stability theorem, from: "Surveys in differential geometry, XI : Metric and comparison geometry" (editors J Cheeger, K Grove), International (2007) 103 | DOI

[25] M G Katz, Torus cannot collapse to a segment, J. Geom. 111 (2020) 13 | DOI

[26] B Kloeckner, S Sabourau, Mixed sectional–Ricci curvature obstructions on tori, J. Topol. Anal. 12 (2020) 713 | DOI

[27] N Lebedeva, A Petrunin, Curvature tensor of smoothable Alexandrov spaces, Geom. Topol. 28 (2024) 3869 | DOI

[28] K Mahler, On lattice points in n–dimensional star bodies, I : Existence theorems, Proc. Roy. Soc. Lond. Ser. A 187 (1946) 151 | DOI

[29] G Y Perelman, Alexandrov spaces with curvatures bounded from below, II, preprint (1991)

[30] G Y Perelman, Elements of Morse theory on Aleksandrov spaces, Algebra i Analiz 5 (1993) 232

[31] G Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint (2002)

[32] G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint (2003)

[33] G Perelman, Ricci flow with surgery on three-manifolds, preprint (2003)

[34] F Raymond, Classification of the actions of the circle on 3–manifolds, Trans. Amer. Math. Soc. 131 (1968) 51 | DOI

[35] R Schoen, S T Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979) 159 | DOI

[36] T Shioya, T Yamaguchi, Collapsing three-manifolds under a lower curvature bound, J. Differential Geom. 56 (2000) 1

[37] M Simon, Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math. 662 (2012) 59 | DOI

[38] G W Whitehead, Elements of homotopy theory, 61, Springer (1978) | DOI

[39] T Yamaguchi, Collapsing and pinching under a lower curvature bound, Ann. of Math. 133 (1991) 317 | DOI

[40] S Zamora, Tori can’t collapse to an interval, Electron. Res. Arch. 29 (2021) 2637 | DOI

[41] S Zamora, First Betti number and collapse, preprint (2022)

Cité par Sources :