Lee filtration structure of torus links
Geometry & topology, Tome 28 (2024) no. 8, pp. 3935-3960.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We determine the quantum filtration structure of the Lee homology of all torus links. In particular, this determines the s–invariant of a torus link equipped with any orientation. In the special case T(n,n), our result confirms a conjecture of Pardon, as well as a conjecture of Manolescu, Marengon, Sarkar and Willis which establishes an adjunction-type inequality of the s–invariant for cobordisms in k¯2. We also give a few applications of this adjunction inequality.

DOI : 10.2140/gt.2024.28.3935
Keywords: torus links, Lee homology, adjunction inequality, $s$–invariant, Khovanov homology

Ren, Qiuyu 1

1 Department of Mathematics, University of California, Berkeley, Berkeley, CA, United States
@article{GT_2024_28_8_a8,
     author = {Ren, Qiuyu},
     title = {Lee filtration structure of torus links},
     journal = {Geometry & topology},
     pages = {3935--3960},
     publisher = {mathdoc},
     volume = {28},
     number = {8},
     year = {2024},
     doi = {10.2140/gt.2024.28.3935},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3935/}
}
TY  - JOUR
AU  - Ren, Qiuyu
TI  - Lee filtration structure of torus links
JO  - Geometry & topology
PY  - 2024
SP  - 3935
EP  - 3960
VL  - 28
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3935/
DO  - 10.2140/gt.2024.28.3935
ID  - GT_2024_28_8_a8
ER  - 
%0 Journal Article
%A Ren, Qiuyu
%T Lee filtration structure of torus links
%J Geometry & topology
%D 2024
%P 3935-3960
%V 28
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3935/
%R 10.2140/gt.2024.28.3935
%F GT_2024_28_8_a8
Ren, Qiuyu. Lee filtration structure of torus links. Geometry & topology, Tome 28 (2024) no. 8, pp. 3935-3960. doi : 10.2140/gt.2024.28.3935. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3935/

[1] T Abe, K Tagami, Characterization of positive links and the s–invariant for links, Canad. J. Math. 69 (2017) 1201 | DOI

[2] D Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337 | DOI

[3] D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 | DOI

[4] M Benheddi, Khovanov homology of torus links: structure and computations, PhD thesis, Université de Genève (2017)

[5] W D Gillam, Knot homology of (3,m) torus knots, J. Knot Theory Ramifications 21 (2012) 1250072 | DOI

[6] E Gorsky, A Oblomkov, J Rasmussen, On stable Khovanov homology of torus knots, Exp. Math. 22 (2013) 265 | DOI

[7] J E Grigsby, A M Licata, S M Wehrli, Annular Khovanov homology and knotted Schur–Weyl representations, Compos. Math. 154 (2018) 459 | DOI

[8] K Hayden, I Sundberg, Khovanov homology and exotic surfaces in the 4–ball, J. Reine Angew. Math. 809 (2024) 217 | DOI

[9] M Hedden, P Ording, The Ozsváth–Szabó and Rasmussen concordance invariants are not equal, Amer. J. Math. 130 (2008) 441 | DOI

[10] M Hedden, K Raoux, Knot Floer homology and relative adjunction inequalities, Selecta Math. 29 (2023) 7 | DOI

[11] M Hogancamp, A Mellit, Torus link homology, preprint (2019)

[12] H Hunt, H Keese, A Licata, S Morrison, Computing annular Khovanov homology, preprint (2015)

[13] D Kasprowski, M Powell, A Ray, P Teichner, Embedding surfaces in 4–manifolds, Geom. Topol. 28 (2024) 2399 | DOI

[14] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 | DOI

[15] E S Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554 | DOI

[16] R A Litherland, Signatures of iterated torus knots, from: "Topology of low-dimensional manifolds" (editor R A Fenn), Lecture Notes in Math. 722, Springer (1979) 71 | DOI

[17] C Manolescu, M Marengon, S Sarkar, M Willis, A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds, Duke Math. J. 172 (2023) 231 | DOI

[18] M Marengon, A N Miller, A Ray, A I Stipsicz, A note on surfaces in CP2 and CP2 # CP2, Proc. Amer. Math. Soc. Ser. B 11 (2024) 187 | DOI

[19] R A Norman, Dehn’s lemma for certain 4–manifolds, Invent. Math. 7 (1969) 143 | DOI

[20] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615 | DOI

[21] J Pardon, The link concordance invariant from Lee homology, Algebr. Geom. Topol. 12 (2012) 1081 | DOI

[22] D Pasechnik, Permutation character of the symmetric group on subsets of certain size, Reply in MathOverflow thread (2013)

[23] L Piccirillo, The Conway knot is not slice, Ann. of Math. 191 (2020) 581 | DOI

[24] J Rasmussen, Khovanov’s invariant for closed surfaces, preprint (2005)

[25] J Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 | DOI

[26] L Roberts, Extending Van Cott’s bounds for the τ and s–invariants of a satellite knot, J. Knot Theory Ramifications 20 (2011) 1237 | DOI

[27] D Schütz, KnotJob, Java program (2023)

[28] M Stošić, Homological thickness and stability of torus knots, Algebr. Geom. Topol. 7 (2007) 261 | DOI

[29] M Stošić, Khovanov homology of torus links, Topology Appl. 156 (2009) 533 | DOI

[30] P R Turner, Calculating Bar-Natan’s characteristic two Khovanov homology, J. Knot Theory Ramifications 15 (2006) 1335 | DOI

[31] P Turner, A spectral sequence for Khovanov homology with an application to (3,q)–torus links, Algebr. Geom. Topol. 8 (2008) 869 | DOI

[32] P Turner, Five lectures on Khovanov homology, J. Knot Theory Ramifications 26 (2017) 1741009 | DOI

Cité par Sources :