Stable maps to Looijenga pairs
Geometry & topology, Tome 28 (2024) no. 1, pp. 393-496.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A log Calabi–Yau surface with maximal boundary, or Looijenga pair, is a pair (Y,D) with Y a smooth rational projective complex surface and D = D1 + + Dl |KY | an anticanonical singular nodal curve. Under some natural conditions on the pair, we propose a series of correspondences relating five different classes of enumerative invariants attached to (Y,D):

the log Gromov–Witten theory of the pair (Y,D),

the Gromov–Witten theory of the total space of i𝒪Y (Di),

the open Gromov–Witten theory of special Lagrangians in a Calabi–Yau 3–fold determined by (Y,D),

the Donaldson–Thomas theory of a symmetric quiver specified by (Y,D), and

a class of BPS invariants considered in different contexts by Klemm and Pandharipande, Ionel and Parker, and Labastida, Mariño, Ooguri and Vafa.

We furthermore provide a complete closed-form solution to the calculation of all these invariants.

DOI : 10.2140/gt.2024.28.393
Keywords: Gromov–Witten invariants, mirror symmetry, log Calabi–Yau surfaces, Donaldson–Thomas invariants

Bousseau, Pierrick 1 ; Brini, Andrea 2 ; van Garrel, Michel 3

1 Department of Mathematics, University of Georgia, Athens, GA, United States
2 School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
3 School of Mathematics, University of Birmingham, Birmingham, United Kingdom
@article{GT_2024_28_1_a5,
     author = {Bousseau, Pierrick and Brini, Andrea and van Garrel, Michel},
     title = {Stable maps to {Looijenga} pairs},
     journal = {Geometry & topology},
     pages = {393--496},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2024},
     doi = {10.2140/gt.2024.28.393},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.393/}
}
TY  - JOUR
AU  - Bousseau, Pierrick
AU  - Brini, Andrea
AU  - van Garrel, Michel
TI  - Stable maps to Looijenga pairs
JO  - Geometry & topology
PY  - 2024
SP  - 393
EP  - 496
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.393/
DO  - 10.2140/gt.2024.28.393
ID  - GT_2024_28_1_a5
ER  - 
%0 Journal Article
%A Bousseau, Pierrick
%A Brini, Andrea
%A van Garrel, Michel
%T Stable maps to Looijenga pairs
%J Geometry & topology
%D 2024
%P 393-496
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.393/
%R 10.2140/gt.2024.28.393
%F GT_2024_28_1_a5
Bousseau, Pierrick; Brini, Andrea; van Garrel, Michel. Stable maps to Looijenga pairs. Geometry & topology, Tome 28 (2024) no. 1, pp. 393-496. doi : 10.2140/gt.2024.28.393. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.393/

[1] D Abramovich, Q Chen, Stable logarithmic maps to Deligne–Faltings pairs, II, Asian J. Math. 18 (2014) 465 | DOI

[2] D Abramovich, Q Chen, M Gross, B Siebert, Decomposition of degenerate Gromov–Witten invariants, Compos. Math. 156 (2020) 2020 | DOI

[3] D Abramovich, J Wise, Birational invariance in logarithmic Gromov–Witten theory, Compos. Math. 154 (2018) 595 | DOI

[4] M Aganagic, C Beem, The geometry of D–brane superpotentials, J. High Energy Phys. (2011) 060, 25 | DOI

[5] M Aganagic, R Dijkgraaf, A Klemm, M Mariño, C Vafa, Topological strings and integrable hierarchies, Comm. Math. Phys. 261 (2006) 451 | DOI

[6] M Aganagic, A Klemm, M Mariño, C Vafa, The topological vertex, Comm. Math. Phys. 254 (2005) 425 | DOI

[7] M Aganagic, C Vafa, Mirror symmetry, D–branes and counting holomorphic discs, preprint (2000)

[8] D Auroux, Mirror symmetry and T–duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. 1 (2007) 51

[9] L J Barrott, Explicit equations for mirror families to log Calabi–Yau surfaces, Bull. Korean Math. Soc. 57 (2020) 139 | DOI

[10] F Block, L Göttsche, Refined curve counting with tropical geometry, Compos. Math. 152 (2016) 115 | DOI

[11] D Borisov, D Joyce, Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds, Geom. Topol. 21 (2017) 3231 | DOI

[12] P Bousseau, Tropical refined curve counting from higher genera and lambda classes, Invent. Math. 215 (2019) 1 | DOI

[13] P Bousseau, Quantum mirrors of log Calabi–Yau surfaces and higher-genus curve counting, Compos. Math. 156 (2020) 360 | DOI

[14] P Bousseau, The quantum tropical vertex, Geom. Topol. 24 (2020) 1297 | DOI

[15] P Bousseau, On an example of quiver Donaldson–Thomas/relative Gromov–Witten correspondence, Int. Math. Res. Not. 2021 (2021) 11845 | DOI

[16] P Bousseau, Strong positivity for the skein algebras of the 4–punctured sphere and of the 1–punctured torus, Comm. Math. Phys. 398 (2023) 1 | DOI

[17] P Bousseau, A Brini, M Van Garrel, Stable maps to Looijenga pairs : orbifold examples, Lett. Math. Phys. 111 (2021) 109 | DOI

[18] P Bousseau, A Brini, M Van Garrel, On the log-local principle for the toric boundary, Bull. Lond. Math. Soc. 54 (2022) 161 | DOI

[19] P Bousseau, H Fan, S Guo, L Wu, Holomorphic anomaly equation for (P2,E) and the Nekrasov–Shatashvili limit of local P2, Forum Math. Pi 9 (2021) | DOI

[20] J Bryan, R Pandharipande, Curves in Calabi–Yau threefolds and topological quantum field theory, Duke Math. J. 126 (2005) 369 | DOI

[21] Y Cao, M Kool, S Monavari, Stable pair invariants of local Calabi–Yau 4–folds, Int. Math. Res. Not. 2022 (2022) 4753 | DOI

[22] Y Cao, N C Leung, Donaldson–Thomas theory for Calabi–Yau 4–folds, preprint (2014)

[23] Y Cao, D Maulik, Y Toda, Genus zero Gopakumar–Vafa type invariants for Calabi–Yau 4–folds, Adv. Math. 338 (2018) 41 | DOI

[24] Y Cao, D Maulik, Y Toda, Stable pairs and Gopakumar–Vafa type invariants for Calabi–Yau 4–folds, J. Eur. Math. Soc. (JEMS) 24 (2022) 527 | DOI

[25] Q Chen, Stable logarithmic maps to Deligne–Faltings pairs I, Ann. of Math. 180 (2014) 455 | DOI

[26] T M Chiang, A Klemm, S T Yau, E Zaslow, Local mirror symmetry: calculations and interpretations, Adv. Theor. Math. Phys. 3 (1999) 495 | DOI

[27] J Choi, M Van Garrel, S Katz, N Takahashi, Local BPS invariants : enumerative aspects and wall-crossing, Int. Math. Res. Not. 2020 (2020) 5450 | DOI

[28] J Choi, M Van Garrel, S Katz, N Takahashi, Log BPS numbers of log Calabi–Yau surfaces, Trans. Amer. Math. Soc. 374 (2021) 687 | DOI

[29] J Choi, M Van Garrel, S Katz, N Takahashi, Sheaves of maximal intersection and multiplicities of stable log maps, Selecta Math. 27 (2021) 61 | DOI

[30] T Coates, A Corti, H Iritani, H H Tseng, Computing genus-zero twisted Gromov–Witten invariants, Duke Math. J. 147 (2009) 377 | DOI

[31] T Coates, A Givental, Quantum Riemann–Roch, Lefschetz and Serre, Ann. of Math. 165 (2007) 15 | DOI

[32] B Davison, T Mandel, Strong positivity for quantum theta bases of quantum cluster algebras, Invent. Math. 226 (2021) 725 | DOI

[33] S Di Rocco, k–very ample line bundles on del Pezzo surfaces, Math. Nachr. 179 (1996) 47 | DOI

[34] A I Efimov, Cohomological Hall algebra of a symmetric quiver, Compos. Math. 148 (2012) 1133 | DOI

[35] T Ekholm, P Kucharski, P Longhi, Multi-cover skeins, quivers, and 3d N = 2 dualities, J. High Energy Phys. (2020) 018 | DOI

[36] T Ekholm, P Kucharski, P Longhi, Physics and geometry of knots–quivers correspondence, Comm. Math. Phys. 379 (2020) 361 | DOI

[37] J Engel, M Reineke, Smooth models of quiver moduli, Math. Z. 262 (2009) 817 | DOI

[38] P Engel, Looijenga’s conjecture via integral-affine geometry, J. Differential Geom. 109 (2018) 467 | DOI

[39] B Fang, C C M Liu, Open Gromov–Witten invariants of toric Calabi–Yau 3–folds, Comm. Math. Phys. 323 (2013) 285 | DOI

[40] R Friedman, On the geometry of anticanonical pairs, preprint (2015)

[41] R Friedman, F Scattone, Type III degenerations of K3 surfaces, Invent. Math. 83 (1986) 1 | DOI

[42] W Fulton, Introduction to toric varieties, 131, Princeton Univ. Press (1993) | DOI

[43] M Van Garrel, T Graber, H Ruddat, Local Gromov–Witten invariants are log invariants, Adv. Math. 350 (2019) 860 | DOI

[44] G Gasper, M Rahman, Basic hypergeometric series, 96, Cambridge Univ. Press (2004) | DOI

[45] P Georgieva, Open Gromov–Witten disk invariants in the presence of an anti-symplectic involution, Adv. Math. 301 (2016) 116 | DOI

[46] A B Givental, Equivariant Gromov–Witten invariants, Int. Math. Res. Not. (1996) 613 | DOI

[47] R Gopakumar, C Vafa, M–theory and topological strings, I, preprint (1998)

[48] R Gopakumar, C Vafa, M–theory and topological strings, II, preprint (1998)

[49] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI

[50] B R Greene, D R Morrison, M R Plesser, Mirror manifolds in higher dimension, Comm. Math. Phys. 173 (1995) 559

[51] M Gross, Tropical geometry and mirror symmetry, 114, Amer. Math. Soc. (2011) | DOI

[52] M Gross, P Hacking, S Keel, Birational geometry of cluster algebras, Algebr. Geom. 2 (2015) 137 | DOI

[53] M Gross, P Hacking, S Keel, Mirror symmetry for log Calabi–Yau surfaces, I, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 65 | DOI

[54] M Gross, P Hacking, S Keel, Moduli of surfaces with an anti-canonical cycle, Compos. Math. 151 (2015) 265 | DOI

[55] M Gross, P Hacking, B Siebert, Theta functions on varieties with effective anti-canonical class, 1367, Amer. Math. Soc. (2022) | DOI

[56] M Gross, R Pandharipande, B Siebert, The tropical vertex, Duke Math. J. 153 (2010) 297 | DOI

[57] M Gross, B Siebert, From real affine geometry to complex geometry, Ann. of Math. 174 (2011) 1301 | DOI

[58] M Gross, B Siebert, Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451 | DOI

[59] V J W Guo, C Krattenthaler, Some divisibility properties of binomial and q–binomial coefficients, J. Number Theory 135 (2014) 167 | DOI

[60] P Hacking, A Keating, Homological mirror symmetry for log Calabi–Yau surfaces, Geom. Topol. 26 (2022) 3747 | DOI

[61] T Hausel, B Sturmfels, Toric hyperKähler varieties, Doc. Math. 7 (2002) 495 | DOI

[62] E N Ionel, T H Parker, The Gopakumar–Vafa formula for symplectic manifolds, Ann. of Math. 187 (2018) 1 | DOI

[63] A Iqbal, A K Kashani-Poor, The vertex on a strip, Adv. Theor. Math. Phys. 10 (2006) 317

[64] S Katz, Genus zero Gopakumar–Vafa invariants of contractible curves, J. Differential Geom. 79 (2008) 185

[65] S Katz, C C M Liu, Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, from: "The interaction of finite-type and Gromov–Witten invariants" (editors D Auckly, J Bryan), Geom. Topol. Monogr. 8, Geom. Topol. Publ. (2006) 1 | DOI

[66] J S Kim, M Yoo, Product formulas for certain skew tableaux, European J. Combin. 84 (2020) 103038 | DOI

[67] T Kimura, M Panfil, Y Sugimoto, P Sułkowski, Branes, quivers and wave-functions, SciPost Phys. 10 (2021) 051 | DOI

[68] A Klemm, R Pandharipande, Enumerative geometry of Calabi–Yau 4–folds, Comm. Math. Phys. 281 (2008) 621 | DOI

[69] Y Konishi, S Minabe, Flop invariance of the topological vertex, Internat. J. Math. 19 (2008) 27 | DOI

[70] M Kontsevich, Y Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 5 (2011) 231 | DOI

[71] C Krattenthaler, Proof of two multivariate q–binomial sums arising in Gromov–Witten theory, preprint (2021)

[72] P Kucharski, M Reineke, M Stošić, P Sułkowski, Knots–quivers correspondence, Adv. Theor. Math. Phys. 23 (2019) 1849 | DOI

[73] J M F Labastida, M Mariño, Polynomial invariants for torus knots and topological strings, Comm. Math. Phys. 217 (2001) 423 | DOI

[74] J M F Labastida, M Mariño, C Vafa, Knots, links and branes at large N, J. High Energy Phys. (2000) 7 | DOI

[75] J Li, A degeneration formula of GW–invariants, J. Differential Geom. 60 (2002) 199

[76] J Li, C C M Liu, K Liu, J Zhou, A mathematical theory of the topological vertex, Geom. Topol. 13 (2009) 527 | DOI

[77] J Li, Y S Song, Open string instantons and relative stable morphisms, Adv. Theor. Math. Phys. 5 (2001) 67 | DOI

[78] C C M Liu, K Liu, J Zhou, A formula of two-partition Hodge integrals, J. Amer. Math. Soc. 20 (2007) 149 | DOI

[79] E Looijenga, Rational surfaces with an anticanonical cycle, Ann. of Math. 114 (1981) 267 | DOI

[80] I G Macdonald, Symmetric functions and Hall polynomials, Oxford Univ. Press (1995)

[81] T Mandel, Tropical theta functions and log Calabi–Yau surfaces, Selecta Math. 22 (2016) 1289 | DOI

[82] T Mandel, Classification of rank 2 cluster varieties, Symmetry Integrability Geom. Methods Appl. 15 (2019) 042 | DOI

[83] T Mandel, Scattering diagrams, theta functions, and refined tropical curve counts, J. Lond. Math. Soc. 104 (2021) 2299 | DOI

[84] T Mandel, Theta bases and log Gromov–Witten invariants of cluster varieties, Trans. Amer. Math. Soc. 374 (2021) 5433 | DOI

[85] T Mandel, H Ruddat, Descendant log Gromov–Witten invariants for toric varieties and tropical curves, Trans. Amer. Math. Soc. 373 (2020) 1109 | DOI

[86] T Mandel, H Ruddat, Tropical quantum field theory, mirror polyvector fields, and multiplicities of tropical curves, Int. Math. Res. Not. 2023 (2023) 3249 | DOI

[87] C Manolache, Virtual pull-backs, J. Algebraic Geom. 21 (2012) 201 | DOI

[88] M Mariño, C Vafa, Framed knots at large N, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 185 | DOI

[89] D Maulik, A Oblomkov, A Okounkov, R Pandharipande, Gromov–Witten/Donaldson–Thomas correspondence for toric 3–folds, Invent. Math. 186 (2011) 435 | DOI

[90] D Maulik, Y Toda, Gopakumar–Vafa invariants via vanishing cycles, Invent. Math. 213 (2018) 1017 | DOI

[91] P Mayr, N = 1 mirror symmetry and open/closed string duality, Adv. Theor. Math. Phys. 5 (2001) 213 | DOI

[92] G Mikhalkin, Enumerative tropical algebraic geometry in R2, J. Amer. Math. Soc. 18 (2005) 313 | DOI

[93] A H Morales, I Pak, G Panova, Hook formulas for skew shapes, I : q–analogues and bijections, J. Combin. Theory Ser. A 154 (2018) 350 | DOI

[94] A H Morales, I Pak, G Panova, Hook formulas for skew shapes, III : Multivariate and product formulas, Algebr. Comb. 2 (2019) 815 | DOI

[95] D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271 | DOI

[96] N Nabijou, D Ranganathan, Gromov–Witten theory with maximal contacts, Forum Math. Sigma 10 (2022) | DOI

[97] T Nishinou, B Siebert, Toric degenerations of toric varieties and tropical curves, Duke Math. J. 135 (2006) 1 | DOI

[98] J Oh, R P Thomas, Counting sheaves on Calabi–Yau 4–folds, I, preprint (2020)

[99] G Olive, Generalized powers, Amer. Math. Monthly 72 (1965) 619 | DOI

[100] H Ooguri, C Vafa, Knot invariants and topological strings, Nuclear Phys. B 577 (2000) 419 | DOI

[101] R Pandharipande, R P Thomas, Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 (2010) 267 | DOI

[102] M Panfil, M Stošić, P Sułkowski, Donaldson–Thomas invariants, torus knots, and lattice paths, Phys. Rev. D 98 (2018) 026022 | DOI

[103] M Panfil, P Sułkowski, Topological strings, strips and quivers, J. High Energy Phys. (2019) 124 | DOI

[104] B Parker, Gluing formula for Gromov–Witten invariants in a triple product, preprint (2015)

[105] D Ranganathan, Logarithmic Gromov–Witten theory with expansions, Algebr. Geom. 9 (2022) 714

[106] S Rayan, Aspects of the topology and combinatorics of Higgs bundle moduli spaces, Symmetry Integrability Geom. Methods Appl. 14 (2018) 129 | DOI

[107] M Reineke, Degenerate cohomological Hall algebra and quantized Donaldson–Thomas invariants for m–loop quivers, Doc. Math. 17 (2012) 1 | DOI

[108] B E Sagan, Congruence properties of q–analogs, Adv. Math. 95 (1992) 127 | DOI

[109] J P Solomon, S B Tukachinsky, Point-like bounding chains in open Gromov–Witten theory, preprint (2016)

[110] R P Stanley, Theory and application of plane partitions, I, Studies in Appl. Math. 50 (1971) 167 | DOI

[111] R P Stanley, Theory and application of plane partitions, II, Studies in Appl. Math. 50 (1971) 259 | DOI

[112] R P Stanley, Enumerative combinatorics, II, 62, Cambridge Univ. Press (1999) | DOI

[113] H H Tseng, Orbifold quantum Riemann–Roch, Lefschetz and Serre, Geom. Topol. 14 (2010) 1 | DOI

[114] T Y Yu, Enumeration of holomorphic cylinders in log Calabi–Yau surfaces, I, Math. Ann. 366 (2016) 1649 | DOI

[115] T Y Yu, Enumeration of holomorphic cylinders in log Calabi–Yau surfaces, II : Positivity, integrality and the gluing formula, Geom. Topol. 25 (2021) 1 | DOI

[116] D Zeilberger, A q–Foata proof of the q–Saalschütz identity, European J. Combin. 8 (1987) 461 | DOI

[117] Y Zhou, Weyl groups and cluster structures of families of log Calabi–Yau surfaces, preprint (2019)

Cité par Sources :