Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A log Calabi–Yau surface with maximal boundary, or Looijenga pair, is a pair with a smooth rational projective complex surface and an anticanonical singular nodal curve. Under some natural conditions on the pair, we propose a series of correspondences relating five different classes of enumerative invariants attached to :
the log Gromov–Witten theory of the pair ,
the Gromov–Witten theory of the total space of ,
the open Gromov–Witten theory of special Lagrangians in a Calabi–Yau –fold determined by ,
the Donaldson–Thomas theory of a symmetric quiver specified by , and
a class of BPS invariants considered in different contexts by Klemm and Pandharipande, Ionel and Parker, and Labastida, Mariño, Ooguri and Vafa.
We furthermore provide a complete closed-form solution to the calculation of all these invariants.
Bousseau, Pierrick 1 ; Brini, Andrea 2 ; van Garrel, Michel 3
@article{GT_2024_28_1_a5, author = {Bousseau, Pierrick and Brini, Andrea and van Garrel, Michel}, title = {Stable maps to {Looijenga} pairs}, journal = {Geometry & topology}, pages = {393--496}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2024}, doi = {10.2140/gt.2024.28.393}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.393/} }
TY - JOUR AU - Bousseau, Pierrick AU - Brini, Andrea AU - van Garrel, Michel TI - Stable maps to Looijenga pairs JO - Geometry & topology PY - 2024 SP - 393 EP - 496 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.393/ DO - 10.2140/gt.2024.28.393 ID - GT_2024_28_1_a5 ER -
Bousseau, Pierrick; Brini, Andrea; van Garrel, Michel. Stable maps to Looijenga pairs. Geometry & topology, Tome 28 (2024) no. 1, pp. 393-496. doi : 10.2140/gt.2024.28.393. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.393/
[1] Stable logarithmic maps to Deligne–Faltings pairs, II, Asian J. Math. 18 (2014) 465 | DOI
, ,[2] Decomposition of degenerate Gromov–Witten invariants, Compos. Math. 156 (2020) 2020 | DOI
, , , ,[3] Birational invariance in logarithmic Gromov–Witten theory, Compos. Math. 154 (2018) 595 | DOI
, ,[4] The geometry of D–brane superpotentials, J. High Energy Phys. (2011) 060, 25 | DOI
, ,[5] Topological strings and integrable hierarchies, Comm. Math. Phys. 261 (2006) 451 | DOI
, , , , ,[6] The topological vertex, Comm. Math. Phys. 254 (2005) 425 | DOI
, , , ,[7] Mirror symmetry, D–branes and counting holomorphic discs, preprint (2000)
, ,[8] Mirror symmetry and T–duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. 1 (2007) 51
,[9] Explicit equations for mirror families to log Calabi–Yau surfaces, Bull. Korean Math. Soc. 57 (2020) 139 | DOI
,[10] Refined curve counting with tropical geometry, Compos. Math. 152 (2016) 115 | DOI
, ,[11] Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds, Geom. Topol. 21 (2017) 3231 | DOI
, ,[12] Tropical refined curve counting from higher genera and lambda classes, Invent. Math. 215 (2019) 1 | DOI
,[13] Quantum mirrors of log Calabi–Yau surfaces and higher-genus curve counting, Compos. Math. 156 (2020) 360 | DOI
,[14] The quantum tropical vertex, Geom. Topol. 24 (2020) 1297 | DOI
,[15] On an example of quiver Donaldson–Thomas/relative Gromov–Witten correspondence, Int. Math. Res. Not. 2021 (2021) 11845 | DOI
,[16] Strong positivity for the skein algebras of the 4–punctured sphere and of the 1–punctured torus, Comm. Math. Phys. 398 (2023) 1 | DOI
,[17] Stable maps to Looijenga pairs : orbifold examples, Lett. Math. Phys. 111 (2021) 109 | DOI
, , ,[18] On the log-local principle for the toric boundary, Bull. Lond. Math. Soc. 54 (2022) 161 | DOI
, , ,[19] Holomorphic anomaly equation for (P2,E) and the Nekrasov–Shatashvili limit of local P2, Forum Math. Pi 9 (2021) | DOI
, , , ,[20] Curves in Calabi–Yau threefolds and topological quantum field theory, Duke Math. J. 126 (2005) 369 | DOI
, ,[21] Stable pair invariants of local Calabi–Yau 4–folds, Int. Math. Res. Not. 2022 (2022) 4753 | DOI
, , ,[22] Donaldson–Thomas theory for Calabi–Yau 4–folds, preprint (2014)
, ,[23] Genus zero Gopakumar–Vafa type invariants for Calabi–Yau 4–folds, Adv. Math. 338 (2018) 41 | DOI
, , ,[24] Stable pairs and Gopakumar–Vafa type invariants for Calabi–Yau 4–folds, J. Eur. Math. Soc. (JEMS) 24 (2022) 527 | DOI
, , ,[25] Stable logarithmic maps to Deligne–Faltings pairs I, Ann. of Math. 180 (2014) 455 | DOI
,[26] Local mirror symmetry: calculations and interpretations, Adv. Theor. Math. Phys. 3 (1999) 495 | DOI
, , , ,[27] Local BPS invariants : enumerative aspects and wall-crossing, Int. Math. Res. Not. 2020 (2020) 5450 | DOI
, , , ,[28] Log BPS numbers of log Calabi–Yau surfaces, Trans. Amer. Math. Soc. 374 (2021) 687 | DOI
, , , ,[29] Sheaves of maximal intersection and multiplicities of stable log maps, Selecta Math. 27 (2021) 61 | DOI
, , , ,[30] Computing genus-zero twisted Gromov–Witten invariants, Duke Math. J. 147 (2009) 377 | DOI
, , , ,[31] Quantum Riemann–Roch, Lefschetz and Serre, Ann. of Math. 165 (2007) 15 | DOI
, ,[32] Strong positivity for quantum theta bases of quantum cluster algebras, Invent. Math. 226 (2021) 725 | DOI
, ,[33] k–very ample line bundles on del Pezzo surfaces, Math. Nachr. 179 (1996) 47 | DOI
,[34] Cohomological Hall algebra of a symmetric quiver, Compos. Math. 148 (2012) 1133 | DOI
,[35] Multi-cover skeins, quivers, and 3d N = 2 dualities, J. High Energy Phys. (2020) 018 | DOI
, , ,[36] Physics and geometry of knots–quivers correspondence, Comm. Math. Phys. 379 (2020) 361 | DOI
, , ,[37] Smooth models of quiver moduli, Math. Z. 262 (2009) 817 | DOI
, ,[38] Looijenga’s conjecture via integral-affine geometry, J. Differential Geom. 109 (2018) 467 | DOI
,[39] Open Gromov–Witten invariants of toric Calabi–Yau 3–folds, Comm. Math. Phys. 323 (2013) 285 | DOI
, ,[40] On the geometry of anticanonical pairs, preprint (2015)
,[41] Type III degenerations of K3 surfaces, Invent. Math. 83 (1986) 1 | DOI
, ,[42] Introduction to toric varieties, 131, Princeton Univ. Press (1993) | DOI
,[43] Local Gromov–Witten invariants are log invariants, Adv. Math. 350 (2019) 860 | DOI
, , ,[44] Basic hypergeometric series, 96, Cambridge Univ. Press (2004) | DOI
, ,[45] Open Gromov–Witten disk invariants in the presence of an anti-symplectic involution, Adv. Math. 301 (2016) 116 | DOI
,[46] Equivariant Gromov–Witten invariants, Int. Math. Res. Not. (1996) 613 | DOI
,[47] M–theory and topological strings, I, preprint (1998)
, ,[48] M–theory and topological strings, II, preprint (1998)
, ,[49] Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI
, ,[50] Mirror manifolds in higher dimension, Comm. Math. Phys. 173 (1995) 559
, , ,[51] Tropical geometry and mirror symmetry, 114, Amer. Math. Soc. (2011) | DOI
,[52] Birational geometry of cluster algebras, Algebr. Geom. 2 (2015) 137 | DOI
, , ,[53] Mirror symmetry for log Calabi–Yau surfaces, I, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 65 | DOI
, , ,[54] Moduli of surfaces with an anti-canonical cycle, Compos. Math. 151 (2015) 265 | DOI
, , ,[55] Theta functions on varieties with effective anti-canonical class, 1367, Amer. Math. Soc. (2022) | DOI
, , ,[56] The tropical vertex, Duke Math. J. 153 (2010) 297 | DOI
, , ,[57] From real affine geometry to complex geometry, Ann. of Math. 174 (2011) 1301 | DOI
, ,[58] Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451 | DOI
, ,[59] Some divisibility properties of binomial and q–binomial coefficients, J. Number Theory 135 (2014) 167 | DOI
, ,[60] Homological mirror symmetry for log Calabi–Yau surfaces, Geom. Topol. 26 (2022) 3747 | DOI
, ,[61] Toric hyperKähler varieties, Doc. Math. 7 (2002) 495 | DOI
, ,[62] The Gopakumar–Vafa formula for symplectic manifolds, Ann. of Math. 187 (2018) 1 | DOI
, ,[63] The vertex on a strip, Adv. Theor. Math. Phys. 10 (2006) 317
, ,[64] Genus zero Gopakumar–Vafa invariants of contractible curves, J. Differential Geom. 79 (2008) 185
,[65] Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, from: "The interaction of finite-type and Gromov–Witten invariants" (editors D Auckly, J Bryan), Geom. Topol. Monogr. 8, Geom. Topol. Publ. (2006) 1 | DOI
, ,[66] Product formulas for certain skew tableaux, European J. Combin. 84 (2020) 103038 | DOI
, ,[67] Branes, quivers and wave-functions, SciPost Phys. 10 (2021) 051 | DOI
, , , ,[68] Enumerative geometry of Calabi–Yau 4–folds, Comm. Math. Phys. 281 (2008) 621 | DOI
, ,[69] Flop invariance of the topological vertex, Internat. J. Math. 19 (2008) 27 | DOI
, ,[70] Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 5 (2011) 231 | DOI
, ,[71] Proof of two multivariate q–binomial sums arising in Gromov–Witten theory, preprint (2021)
,[72] Knots–quivers correspondence, Adv. Theor. Math. Phys. 23 (2019) 1849 | DOI
, , , ,[73] Polynomial invariants for torus knots and topological strings, Comm. Math. Phys. 217 (2001) 423 | DOI
, ,[74] Knots, links and branes at large N, J. High Energy Phys. (2000) 7 | DOI
, , ,[75] A degeneration formula of GW–invariants, J. Differential Geom. 60 (2002) 199
,[76] A mathematical theory of the topological vertex, Geom. Topol. 13 (2009) 527 | DOI
, , , ,[77] Open string instantons and relative stable morphisms, Adv. Theor. Math. Phys. 5 (2001) 67 | DOI
, ,[78] A formula of two-partition Hodge integrals, J. Amer. Math. Soc. 20 (2007) 149 | DOI
, , ,[79] Rational surfaces with an anticanonical cycle, Ann. of Math. 114 (1981) 267 | DOI
,[80] Symmetric functions and Hall polynomials, Oxford Univ. Press (1995)
,[81] Tropical theta functions and log Calabi–Yau surfaces, Selecta Math. 22 (2016) 1289 | DOI
,[82] Classification of rank 2 cluster varieties, Symmetry Integrability Geom. Methods Appl. 15 (2019) 042 | DOI
,[83] Scattering diagrams, theta functions, and refined tropical curve counts, J. Lond. Math. Soc. 104 (2021) 2299 | DOI
,[84] Theta bases and log Gromov–Witten invariants of cluster varieties, Trans. Amer. Math. Soc. 374 (2021) 5433 | DOI
,[85] Descendant log Gromov–Witten invariants for toric varieties and tropical curves, Trans. Amer. Math. Soc. 373 (2020) 1109 | DOI
, ,[86] Tropical quantum field theory, mirror polyvector fields, and multiplicities of tropical curves, Int. Math. Res. Not. 2023 (2023) 3249 | DOI
, ,[87] Virtual pull-backs, J. Algebraic Geom. 21 (2012) 201 | DOI
,[88] Framed knots at large N, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 185 | DOI
, ,[89] Gromov–Witten/Donaldson–Thomas correspondence for toric 3–folds, Invent. Math. 186 (2011) 435 | DOI
, , , ,[90] Gopakumar–Vafa invariants via vanishing cycles, Invent. Math. 213 (2018) 1017 | DOI
, ,[91] N = 1 mirror symmetry and open/closed string duality, Adv. Theor. Math. Phys. 5 (2001) 213 | DOI
,[92] Enumerative tropical algebraic geometry in R2, J. Amer. Math. Soc. 18 (2005) 313 | DOI
,[93] Hook formulas for skew shapes, I : q–analogues and bijections, J. Combin. Theory Ser. A 154 (2018) 350 | DOI
, , ,[94] Hook formulas for skew shapes, III : Multivariate and product formulas, Algebr. Comb. 2 (2019) 815 | DOI
, , ,[95] Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271 | DOI
,[96] Gromov–Witten theory with maximal contacts, Forum Math. Sigma 10 (2022) | DOI
, ,[97] Toric degenerations of toric varieties and tropical curves, Duke Math. J. 135 (2006) 1 | DOI
, ,[98] Counting sheaves on Calabi–Yau 4–folds, I, preprint (2020)
, ,[99] Generalized powers, Amer. Math. Monthly 72 (1965) 619 | DOI
,[100] Knot invariants and topological strings, Nuclear Phys. B 577 (2000) 419 | DOI
, ,[101] Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 (2010) 267 | DOI
, ,[102] Donaldson–Thomas invariants, torus knots, and lattice paths, Phys. Rev. D 98 (2018) 026022 | DOI
, , ,[103] Topological strings, strips and quivers, J. High Energy Phys. (2019) 124 | DOI
, ,[104] Gluing formula for Gromov–Witten invariants in a triple product, preprint (2015)
,[105] Logarithmic Gromov–Witten theory with expansions, Algebr. Geom. 9 (2022) 714
,[106] Aspects of the topology and combinatorics of Higgs bundle moduli spaces, Symmetry Integrability Geom. Methods Appl. 14 (2018) 129 | DOI
,[107] Degenerate cohomological Hall algebra and quantized Donaldson–Thomas invariants for m–loop quivers, Doc. Math. 17 (2012) 1 | DOI
,[108] Congruence properties of q–analogs, Adv. Math. 95 (1992) 127 | DOI
,[109] Point-like bounding chains in open Gromov–Witten theory, preprint (2016)
, ,[110] Theory and application of plane partitions, I, Studies in Appl. Math. 50 (1971) 167 | DOI
,[111] Theory and application of plane partitions, II, Studies in Appl. Math. 50 (1971) 259 | DOI
,[112] Enumerative combinatorics, II, 62, Cambridge Univ. Press (1999) | DOI
,[113] Orbifold quantum Riemann–Roch, Lefschetz and Serre, Geom. Topol. 14 (2010) 1 | DOI
,[114] Enumeration of holomorphic cylinders in log Calabi–Yau surfaces, I, Math. Ann. 366 (2016) 1649 | DOI
,[115] Enumeration of holomorphic cylinders in log Calabi–Yau surfaces, II : Positivity, integrality and the gluing formula, Geom. Topol. 25 (2021) 1 | DOI
,[116] A q–Foata proof of the q–Saalschütz identity, European J. Combin. 8 (1987) 461 | DOI
,[117] Weyl groups and cluster structures of families of log Calabi–Yau surfaces, preprint (2019)
,Cité par Sources :