On boundedness of singularities and minimal log discrepancies of Kollár components, II
Geometry & topology, Tome 28 (2024) no. 8, pp. 3909-3933.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that a set of K–semistable log Fano cone singularities is bounded if and only if their local volumes are bounded away from zero, and their minimal log discrepancies of Kollár components are bounded from above. As corollaries, we confirm the boundedness conjecture for K–semistable log Fano cone singularities in dimension three, and show that local volumes of 3–dimensional klt singularities only accumulate at zero.

DOI : 10.2140/gt.2024.28.3909
Keywords: boundedness, klt singularities, moduli, K-stability, normalized volume, Kollár component

Zhuang, Ziquan 1

1 Department of Mathematics, Johns Hopkins University, Baltimore, MD, United States
@article{GT_2024_28_8_a7,
     author = {Zhuang, Ziquan},
     title = {On boundedness of singularities and minimal log discrepancies of {Koll\'ar} components, {II}},
     journal = {Geometry & topology},
     pages = {3909--3933},
     publisher = {mathdoc},
     volume = {28},
     number = {8},
     year = {2024},
     doi = {10.2140/gt.2024.28.3909},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3909/}
}
TY  - JOUR
AU  - Zhuang, Ziquan
TI  - On boundedness of singularities and minimal log discrepancies of Kollár components, II
JO  - Geometry & topology
PY  - 2024
SP  - 3909
EP  - 3933
VL  - 28
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3909/
DO  - 10.2140/gt.2024.28.3909
ID  - GT_2024_28_8_a7
ER  - 
%0 Journal Article
%A Zhuang, Ziquan
%T On boundedness of singularities and minimal log discrepancies of Kollár components, II
%J Geometry & topology
%D 2024
%P 3909-3933
%V 28
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3909/
%R 10.2140/gt.2024.28.3909
%F GT_2024_28_8_a7
Zhuang, Ziquan. On boundedness of singularities and minimal log discrepancies of Kollár components, II. Geometry & topology, Tome 28 (2024) no. 8, pp. 3909-3933. doi : 10.2140/gt.2024.28.3909. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3909/

[1] C Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math. 190 (2019) 345 | DOI

[2] C Birkar, Singularities of linear systems and boundedness of Fano varieties, Ann. of Math. 193 (2021) 347 | DOI

[3] C Birkar, P Cascini, C D Hacon, J Mckernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010) 405 | DOI

[4] H Blum, Existence of valuations with smallest normalized volume, Compos. Math. 154 (2018) 820 | DOI

[5] H Blum, M Jonsson, Thresholds, valuations, and K–stability, Adv. Math. 365 (2020) 107062 | DOI

[6] H Blum, Y Liu, The normalized volume of a singularity is lower semicontinuous, J. Eur. Math. Soc. 23 (2021) 1225 | DOI

[7] H Blum, Y Liu, Openness of uniform K–stability in families of Q–Fano varieties, Ann. Sci. École Norm. Sup. 55 (2022) 1 | DOI

[8] H Blum, Y Liu, L Qi, Convexity of multiplicities of filtrations on local rings, Compos. Math. 160 (2024) 878 | DOI

[9] S Boucksom, T De Fernex, C Favre, S Urbinati, Valuation spaces and multiplier ideals on singular varieties, from: "Recent advances in algebraic geometry" (editors C D Hacon, M Mustaţă, M Popa), Lond. Math. Soc. Lect. Note Ser. 417, Cambridge Univ. Press (2015) 29 | DOI

[10] T C Collins, G Székelyhidi, K–semistability for irregular Sasakian manifolds, J. Differential Geom. 109 (2018) 81 | DOI

[11] T C Collins, G Székelyhidi, Sasaki–Einstein metrics and K-stability, Geom. Topol. 23 (2019) 1339 | DOI

[12] M Demazure, A Grothendieck, Schémas en groupes, Tome II : Groupes de type multiplicatif, et structure des schémas en groupes généraux, Exposés VIII–XVIII (SGA 3II ), 152, Springer (1970)

[13] K Fujita, Y Odaka, On the K-stability of Fano varieties and anticanonical divisors, Tohoku Math. J. 70 (2018) 511 | DOI

[14] C D Hacon, J Mckernan, C Xu, ACC for log canonical thresholds, Ann. of Math. 180 (2014) 523 | DOI

[15] J Han, J Liu, V V Shokurov, ACC for minimal log discrepancies of exceptional singularities, preprint (2019)

[16] J Han, Y Liu, L Qi, ACC for local volumes and boundedness of singularities, J. Algebraic Geom. 32 (2023) 519 | DOI

[17] K Huang, K–stability of log Fano cone singularities, PhD thesis, Massachusetts Institute of Technology (2022)

[18] C Jiang, Boundedness of Q–Fano varieties with degrees and alpha-invariants bounded from below, Ann. Sci. École Norm. Sup. 53 (2020) 1235 | DOI

[19] M Jonsson, M Mustaţă, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 (2012) 2145 | DOI

[20] J Kollár, Seifert Gm–bundles, preprint (2004)

[21] J Kollár, Singularities of the minimal model program, 200, Cambridge Univ. Press (2013) | DOI

[22] J Kollár, Families of varieties of general type, 231, Cambridge Univ. Press (2023) | DOI

[23] J Kollár, S Mori, Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI

[24] C Li, Minimizing normalized volumes of valuations, Math. Z. 289 (2018) 491 | DOI

[25] C Li, Y Liu, C Xu, A guided tour to normalized volume, from: "Geometric analysis" (editors J Chen, P Lu, Z Lu, Z Zhang), Progr. Math. 333, Birkhäuser (2020) 167 | DOI

[26] C Li, X Wang, C Xu, Algebraicity of the metric tangent cones and equivariant K-stability, J. Amer. Math. Soc. 34 (2021) 1175 | DOI

[27] C Li, C Xu, Stability of valuations: higher rational rank, Peking Math. J. 1 (2018) 1 | DOI

[28] C Li, C Xu, Stability of valuations and Kollár components, J. Eur. Math. Soc. 22 (2020) 2573 | DOI

[29] Y Liu, J Moraga, H Süss, On the boundedness of singularities via normalized volume, preprint (2023)

[30] Y Liu, C Xu, K–stability of cubic threefolds, Duke Math. J. 168 (2019) 2029 | DOI

[31] Y Liu, C Xu, Z Zhuang, Finite generation for valuations computing stability thresholds and applications to K-stability, Ann. of Math. 196 (2022) 507 | DOI

[32] Y Liu, Z Zhuang, On the sharpness of Tian’s criterion for K-stability, Nagoya Math. J. 245 (2022) 41 | DOI

[33] J Moraga, H Süss, On the boundedness of singularities via normalized volume, preprint (2022)

[34] J Moraga, H Süss, Bounding toric singularities with normalized volume, Bull. Lond. Math. Soc. 56 (2024) 2212 | DOI

[35] S Sun, J Zhang, No semistability at infinity for Calabi–Yau metrics asymptotic to cones, Invent. Math. 233 (2023) 461 | DOI

[36] C Xu, Finiteness of algebraic fundamental groups, Compos. Math. 150 (2014) 409 | DOI

[37] C Xu, A minimizing valuation is quasi-monomial, Ann. of Math. 191 (2020) 1003 | DOI

[38] C Xu, K–stability of Fano varieties : an algebro-geometric approach, EMS Surv. Math. Sci. 8 (2021) 265 | DOI

[39] C Xu, Z Zhuang, Uniqueness of the minimizer of the normalized volume function, Camb. J. Math. 9 (2021) 149 | DOI

[40] C Xu, Z Zhuang, Stable degenerations of singularities, preprint (2022)

[41] Z Zhuang, Direct summands of klt singularities, preprint (2022)

[42] Z Zhuang, On boundedness of singularities and minimal log discrepancies of Kollár components, J. Algebraic Geom. 33 (2024) 521 | DOI

Cité par Sources :