We conjecture that the generating series of Gromov–Witten invariants of the Hilbert schemes of n points on a K3 surface are quasi-Jacobi forms and satisfy a holomorphic anomaly equation. We prove the conjecture in genus 0 and for at most three markings — for all Hilbert schemes and for arbitrary curve classes. In particular, for fixed n, the reduced quantum cohomologies of all hyperkähler varieties of K3 [n]–type are determined up to finitely many coefficients.
As an application we show that the generating series of 2–point Gromov–Witten classes are vector-valued Jacobi forms of weight − 10, and that the fiberwise Donaldson–Thomas partition functions of an order-2 CHL Calabi–Yau threefold are Jacobi forms.
Oberdieck, Georg 1
@article{10_2140_gt_2024_28_3779,
author = {Oberdieck, Georg},
title = {Holomorphic anomaly equations for the {Hilbert} scheme of points of a {K3} surface},
journal = {Geometry & topology},
pages = {3779--3868},
year = {2024},
volume = {28},
number = {8},
doi = {10.2140/gt.2024.28.3779},
url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3779/}
}
TY - JOUR AU - Oberdieck, Georg TI - Holomorphic anomaly equations for the Hilbert scheme of points of a K3 surface JO - Geometry & topology PY - 2024 SP - 3779 EP - 3868 VL - 28 IS - 8 UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3779/ DO - 10.2140/gt.2024.28.3779 ID - 10_2140_gt_2024_28_3779 ER -
Oberdieck, Georg. Holomorphic anomaly equations for the Hilbert scheme of points of a K3 surface. Geometry & topology, Tome 28 (2024) no. 8, pp. 3779-3868. doi: 10.2140/gt.2024.28.3779
[1] , , , Relative and orbifold Gromov–Witten invariants, Algebr. Geom. 4 (2017) 472 | DOI
[2] , , , , Gauss–Manin connection in disguise : Calabi–Yau threefolds, Comm. Math. Phys. 344 (2016) 889 | DOI
[3] , , , , Gromov–Witten theory of complete intersections via nodal invariants, J. Topol. 16 (2023) 264 | DOI
[4] , , Curves on K3 surfaces in divisibility 2, Forum Math. Sigma 9 (2021) | DOI
[5] , , Chow rings of stacks of prestable curves, I, Forum Math. Sigma 10 (2022) | DOI
[6] , , , , , Pixton’s formula and Abel–Jacobi theory on the Picard stack, Acta Math. 230 (2023) 205 | DOI
[7] , Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755
[8] , Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601 | DOI
[9] , The product formula for Gromov–Witten invariants, J. Algebraic Geom. 8 (1999) 529
[10] , , The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI
[11] , , , , Holomorphic anomalies in topological field theories, Nuclear Phys. B 405 (1993) 279 | DOI
[12] , , The character of the infinite wedge representation, Adv. Math. 149 (2000) 1 | DOI
[13] , , , , Holomorphic anomaly equation for (P2,E) and the Nekrasov–Shatashvili limit of local P2, Forum Math. Pi 9 (2021) | DOI
[14] , , The enumerative geometry of K3 surfaces and modular forms, J. Amer. Math. Soc. 13 (2000) 371 | DOI
[15] , , CHL Calabi–Yau threefolds : curve counting, Mathieu moonshine and Siegel modular forms, Commun. Number Theory Phys. 14 (2020) 785 | DOI
[16] , , The local Gromov–Witten theory of curves, J. Amer. Math. Soc. 21 (2008) 101 | DOI
[17] , , , , Curve counting on abelian surfaces and threefolds, Algebr. Geom. 5 (2018) 398 | DOI
[18] , , , Gopakumar–Vafa type invariants of holomorphic symplectic 4–folds, Comm. Math. Phys. 405 (2024) 26 | DOI
[19] , , , BCOV’s Feynman rule of quintic 3–folds, preprint (2018)
[20] , , Gromov–Witten invariants of local P2 and modular forms, Kyoto J. Math. 61 (2021) 543 | DOI
[21] , , The theory of Jacobi forms, 55, Birkhäuser (1985) | DOI
[22] , , Computation of open Gromov–Witten invariants for toric Calabi–Yau 3–folds by topological recursion : a proof of the BKMP conjecture, Comm. Math. Phys. 337 (2015) 483 | DOI
[23] , , , Holomorphic anomaly and matrix models, J. High Energy Phys. 2007 (2007) 058 | DOI
[24] , , Relative maps and tautological classes, J. Eur. Math. Soc. 7 (2005) 13 | DOI
[25] , , , , Open Gromov–Witten theory of KP2, KP1×P1, KW P[1,1,2], KF1 and Jacobi forms, Comm. Math. Phys. 369 (2019) 675 | DOI
[26] , , , On the remodeling conjecture for toric Calabi–Yau 3–orbifolds, J. Amer. Math. Soc. 33 (2020) 135 | DOI
[27] , On the de Rham cohomology group of a compact Kähler symplectic manifold, from: "Algebraic geometry" (editor T Oda), Adv. Stud. Pure Math. 10, North-Holland (1987) 105 | DOI
[28] , Instantons and affine algebras, I : The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275 | DOI
[29] , , , Structure of higher genus Gromov–Witten invariants of quintic 3–folds, preprint (2018)
[30] , A global Torelli theorem for hyperkähler manifolds (after M Verbitsky), from: "Séminaire Bourbaki, 2010/2011", Astérisque 348, Soc. Math. France (2012)
[31] , , , Gromov–Witten theory of K3 surfaces and a Kaneko–Zagier equation for Jacobi forms, Selecta Math. 27 (2021) 64 | DOI
[32] , , A generalized Jacobi theta function and quasimodular forms, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 165 | DOI
[33] , , Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013) 1025 | DOI
[34] , , A generalization of Fulton–MacPherson configuration spaces, Selecta Math. 15 (2009) 435 | DOI
[35] , Introduction to elliptic curves and modular forms, 97, Springer (1993) | DOI
[36] , , Reduced classes and curve counting on surfaces, I : Theory, Algebr. Geom. 1 (2014) 334 | DOI
[37] , Cycle groups for Artin stacks, Invent. Math. 138 (1999) 495 | DOI
[38] , , A product formula for log Gromov–Witten invariants, J. Math. Soc. Japan 70 (2018) 229 | DOI
[39] , Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157 | DOI
[40] , Gromov–Witten invariants of Calabi–Yau fibrations, preprint (2019)
[41] , Gromov–Witten invariants of Calabi–Yau manifolds with two Kähler parameters, Int. Math. Res. Not. 2021 (2021) 7552 | DOI
[42] , , Stable quotients and the holomorphic anomaly equation, Adv. Math. 332 (2018) 349 | DOI
[43] , , Crepant resolution and the holomorphic anomaly equation for [C3∕Z3], Proc. Lond. Math. Soc. 119 (2019) 781 | DOI
[44] , , Holomorphic anomaly equations for the formal quintic, Peking Math. J. 2 (2019) 1 | DOI
[45] , Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001) 509
[46] , A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002) 199
[47] , Lecture notes on relative GW-invariants, from: "Intersection theory and moduli" (editors E Arbarello, G Ellingsrud, L Goettsche), ICTP Lect. Notes 19, Abdus Salam Int. Cent. Theoret. Phys. (2004) 41
[48] , , Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119 | DOI
[49] , Elliptic genera, real algebraic varieties and quasi-Jacobi forms, from: "Topology of stratified spaces" (editors G Friedman, E Hunsicker, A Libgober, L Maxim), Math. Sci. Res. Inst. Publ. 58, Cambridge Univ. Press (2011) 95
[50] , Quasimaps and stable pairs, Forum Math. Sigma 9 (2021) | DOI
[51] , , A Lie algebra attached to a projective variety, Invent. Math. 129 (1997) 361 | DOI
[52] , On the monodromy of moduli spaces of sheaves on K3 surfaces, J. Algebraic Geom. 17 (2008) 29 | DOI
[53] , A survey of Torelli and monodromy results for holomorphic-symplectic varieties, from: "Complex and differential geometry" (editors W Ebeling, K Hulek, K Smoczyk), Springer Proc. Math. 8, Springer (2011) 257 | DOI
[54] , On the existence of universal families of marked irreducible holomorphic symplectic manifolds, Kyoto J. Math. 61 (2021) 207 | DOI
[55] , Gromov–Witten theory of An–resolutions, Geom. Topol. 13 (2009) 1729 | DOI
[56] , , Donaldson–Thomas theory of An × P1, Compos. Math. 145 (2009) 1249 | DOI
[57] , , Quantum cohomology of the Hilbert scheme of points on An–resolutions, J. Amer. Math. Soc. 22 (2009) 1055 | DOI
[58] , , A topological view of Gromov–Witten theory, Topology 45 (2006) 887 | DOI
[59] , , Gromov–Witten theory and Noether–Lefschetz theory, from: "A celebration of algebraic geometry" (editors B Hassett, J McKernan, J Starr, R Vakil), Clay Math. Proc. 18, Amer. Math. Soc. (2013) 469
[60] , , , , Gromov–Witten theory and Donaldson–Thomas theory, I, Compos. Math. 142 (2006) 1263 | DOI
[61] , , , , Gromov–Witten theory and Donaldson–Thomas theory, II, Compos. Math. 142 (2006) 1286 | DOI
[62] , , , Curves on K3 surfaces and modular forms, J. Topol. 3 (2010) 937 | DOI
[63] , , , , Gromov–Witten/Donaldson–Thomas correspondence for toric 3–folds, Invent. Math. 186 (2011) 435 | DOI
[64] , , , Gromov–Witten theory and cycle-valued modular forms, J. Reine Angew. Math. 735 (2018) 287 | DOI
[65] , Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. 145 (1997) 379 | DOI
[66] , , , Motivic decompositions for the Hilbert scheme of points of a K3 surface, J. Reine Angew. Math. 778 (2021) 65 | DOI
[67] , Quasimaps to moduli spaces of sheaves, preprint (2021)
[68] , Quasimaps to moduli spaces of sheaves on a K3 surface, Forum Math. Sigma 12 (2024) | DOI
[69] , A Serre derivative for even weight Jacobi forms, preprint (2012)
[70] , The enumerative geometry of the Hilbert schemes of points of a K3 surface, PhD thesis, ETH Zürich (2015) | DOI
[71] , Gromov–Witten invariants of the Hilbert schemes of points of a K3 surface, Geom. Topol. 22 (2018) 323 | DOI
[72] , On reduced stable pair invariants, Math. Z. 289 (2018) 323 | DOI
[73] , Gromov–Witten theory of K3 × P1 and quasi-Jacobi forms, Int. Math. Res. Not. 2019 (2019) 4966 | DOI
[74] , A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface, Comment. Math. Helv. 96 (2021) 65 | DOI
[75] , Gromov–Witten theory and Noether–Lefschetz theory for holomorphic-symplectic varieties, Forum Math. Sigma 10 (2022) | DOI
[76] , Marked relative invariants and GW/PT correspondences, Adv. Math. 439 (2024) 109472 | DOI
[77] , Multiple cover formulas for K3 geometries, wall-crossing, and Quot schemes, Geom. Topol. 28 (2024) 3221 | DOI
[78] , , Curve counting on K3 ×E, the Igusa cusp form χ10, and descendent integration, from: " surfaces and their moduli" (editors C Faber, G Farkas, G van der Geer), Progr. Math. 315, Birkhäuser (2016) 245 | DOI
[79] , , Holomorphic anomaly equations and the Igusa cusp form conjecture, Invent. Math. 213 (2018) 507 | DOI
[80] , , Gromov–Witten theory of elliptic fibrations : Jacobi forms and holomorphic anomaly equations, Geom. Topol. 23 (2019) 1415 | DOI
[81] , , Quantum cohomology of the Hilbert scheme of points on an elliptic surface, (2023)
[82] , , Curve counting on elliptic Calabi–Yau threefolds via derived categories, J. Eur. Math. Soc. 22 (2020) 967 | DOI
[83] , Quasisymmetric functions and the Chow ring of the stack of expanded pairs, Res. Math. Sci. 6 (2019) 5 | DOI
[84] , , Virasoro constraints for target curves, Invent. Math. 163 (2006) 47 | DOI
[85] , , The local Donaldson–Thomas theory of curves, Geom. Topol. 14 (2010) 1503 | DOI
[86] , , Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010) 523 | DOI
[87] , , Gromov–Witten/pairs descendent correspondence for toric 3–folds, Geom. Topol. 18 (2014) 2747 | DOI
[88] , , Gromov–Witten/pairs correspondence for the quintic 3–fold, J. Amer. Math. Soc. 30 (2017) 389 | DOI
[89] , The Stacks project, electronic reference (2005–)
[90] , Cohomology of compact hyper-Kähler manifolds and its applications, Geom. Funct. Anal. 6 (1996) 601 | DOI
[91] , Mapping class group and a global Torelli theorem for hyperkähler manifolds, Duke Math. J. 162 (2013) 2929 | DOI
[92] , Quasi-modularity and holomorphic anomaly equation for the twisted Gromov–Witten theory : O(3) over P2, Acta Math. Sin. (Engl. Ser.) 35 (2019) 1945 | DOI
[93] , Finite generation and holomorphic anomaly equation for equivariant Gromov–Witten invariants of KP1×P1, Front. Math. 18 (2023) 17 | DOI
[94] , Elliptic functions according to Eisenstein and Kronecker, 88, Springer (1976) | DOI
[95] , Periods of modular forms and Jacobi theta functions, Invent. Math. 104 (1991) 449 | DOI
[96] , Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg 59 (1989) 191 | DOI
[97] , Intersection of double loci with boundary strata, unpublished note (2015)
Cité par Sources :