Holomorphic anomaly equations for the Hilbert scheme of points of a K3 surface
Geometry & topology, Tome 28 (2024) no. 8, pp. 3779-3868 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

We conjecture that the generating series of Gromov–Witten invariants of the Hilbert schemes of n points on a K3 surface are quasi-Jacobi forms and satisfy a holomorphic anomaly equation. We prove the conjecture in genus 0 and for at most three markings — for all Hilbert schemes and for arbitrary curve classes. In particular, for fixed n, the reduced quantum cohomologies of all hyperkähler varieties of K3 ⁡ [n]–type are determined up to finitely many coefficients.

As an application we show that the generating series of 2–point Gromov–Witten classes are vector-valued Jacobi forms of weight − 10, and that the fiberwise Donaldson–Thomas partition functions of an order-2 CHL Calabi–Yau threefold are Jacobi forms.

DOI : 10.2140/gt.2024.28.3779
Keywords: Gromov–Witten theory, K3 surfaces, Jacobi forms, Hilbert schemes of points, holomorphic anomaly equations

Oberdieck, Georg 1

1 Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
@article{10_2140_gt_2024_28_3779,
     author = {Oberdieck, Georg},
     title = {Holomorphic anomaly equations for the {Hilbert} scheme of points of a {K3} surface},
     journal = {Geometry & topology},
     pages = {3779--3868},
     year = {2024},
     volume = {28},
     number = {8},
     doi = {10.2140/gt.2024.28.3779},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3779/}
}
TY  - JOUR
AU  - Oberdieck, Georg
TI  - Holomorphic anomaly equations for the Hilbert scheme of points of a K3 surface
JO  - Geometry & topology
PY  - 2024
SP  - 3779
EP  - 3868
VL  - 28
IS  - 8
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3779/
DO  - 10.2140/gt.2024.28.3779
ID  - 10_2140_gt_2024_28_3779
ER  - 
%0 Journal Article
%A Oberdieck, Georg
%T Holomorphic anomaly equations for the Hilbert scheme of points of a K3 surface
%J Geometry & topology
%D 2024
%P 3779-3868
%V 28
%N 8
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3779/
%R 10.2140/gt.2024.28.3779
%F 10_2140_gt_2024_28_3779
Oberdieck, Georg. Holomorphic anomaly equations for the Hilbert scheme of points of a K3 surface. Geometry & topology, Tome 28 (2024) no. 8, pp. 3779-3868. doi: 10.2140/gt.2024.28.3779

[1] D Abramovich, C Cadman, J Wise, Relative and orbifold Gromov–Witten invariants, Algebr. Geom. 4 (2017) 472 | DOI

[2] M Alim, H Movasati, E Scheidegger, S T Yau, Gauss–Manin connection in disguise : Calabi–Yau threefolds, Comm. Math. Phys. 344 (2016) 889 | DOI

[3] H Argüz, P Bousseau, R Pandharipande, D Zvonkine, Gromov–Witten theory of complete intersections via nodal invariants, J. Topol. 16 (2023) 264 | DOI

[4] Y Bae, T H Buelles, Curves on K3 surfaces in divisibility 2, Forum Math. Sigma 9 (2021) | DOI

[5] Y Bae, J Schmitt, Chow rings of stacks of prestable curves, I, Forum Math. Sigma 10 (2022) | DOI

[6] Y Bae, D Holmes, R Pandharipande, J Schmitt, R Schwarz, Pixton’s formula and Abel–Jacobi theory on the Picard stack, Acta Math. 230 (2023) 205 | DOI

[7] A Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755

[8] K Behrend, Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601 | DOI

[9] K Behrend, The product formula for Gromov–Witten invariants, J. Algebraic Geom. 8 (1999) 529

[10] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI

[11] M Bershadsky, S Cecotti, H Ooguri, C Vafa, Holomorphic anomalies in topological field theories, Nuclear Phys. B 405 (1993) 279 | DOI

[12] S Bloch, A Okounkov, The character of the infinite wedge representation, Adv. Math. 149 (2000) 1 | DOI

[13] P Bousseau, H Fan, S Guo, L Wu, Holomorphic anomaly equation for (P2,E) and the Nekrasov–Shatashvili limit of local P2, Forum Math. Pi 9 (2021) | DOI

[14] J Bryan, N C Leung, The enumerative geometry of K3 surfaces and modular forms, J. Amer. Math. Soc. 13 (2000) 371 | DOI

[15] J Bryan, G Oberdieck, CHL Calabi–Yau threefolds : curve counting, Mathieu moonshine and Siegel modular forms, Commun. Number Theory Phys. 14 (2020) 785 | DOI

[16] J Bryan, R Pandharipande, The local Gromov–Witten theory of curves, J. Amer. Math. Soc. 21 (2008) 101 | DOI

[17] J Bryan, G Oberdieck, R Pandharipande, Q Yin, Curve counting on abelian surfaces and threefolds, Algebr. Geom. 5 (2018) 398 | DOI

[18] Y Cao, G Oberdieck, Y Toda, Gopakumar–Vafa type invariants of holomorphic symplectic 4–folds, Comm. Math. Phys. 405 (2024) 26 | DOI

[19] H L Chang, S Guo, J Li, BCOV’s Feynman rule of quintic 3–folds, preprint (2018)

[20] T Coates, H Iritani, Gromov–Witten invariants of local P2 and modular forms, Kyoto J. Math. 61 (2021) 543 | DOI

[21] M Eichler, D Zagier, The theory of Jacobi forms, 55, Birkhäuser (1985) | DOI

[22] B Eynard, N Orantin, Computation of open Gromov–Witten invariants for toric Calabi–Yau 3–folds by topological recursion : a proof of the BKMP conjecture, Comm. Math. Phys. 337 (2015) 483 | DOI

[23] B Eynard, N Orantin, M Mariño, Holomorphic anomaly and matrix models, J. High Energy Phys. 2007 (2007) 058 | DOI

[24] C Faber, R Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. 7 (2005) 13 | DOI

[25] B Fang, Y Ruan, Y Zhang, J Zhou, Open Gromov–Witten theory of KP2, KP1×P1, KW P[1,1,2], KF1 and Jacobi forms, Comm. Math. Phys. 369 (2019) 675 | DOI

[26] B Fang, C C M Liu, Z Zong, On the remodeling conjecture for toric Calabi–Yau 3–orbifolds, J. Amer. Math. Soc. 33 (2020) 135 | DOI

[27] A Fujiki, On the de Rham cohomology group of a compact Kähler symplectic manifold, from: "Algebraic geometry" (editor T Oda), Adv. Stud. Pure Math. 10, North-Holland (1987) 105 | DOI

[28] I Grojnowski, Instantons and affine algebras, I : The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275 | DOI

[29] S Guo, F Janda, Y Ruan, Structure of higher genus Gromov–Witten invariants of quintic 3–folds, preprint (2018)

[30] D Huybrechts, A global Torelli theorem for hyperkähler manifolds (after M Verbitsky), from: "Séminaire Bourbaki, 2010/2011", Astérisque 348, Soc. Math. France (2012)

[31] J W Van Ittersum, G Oberdieck, A Pixton, Gromov–Witten theory of K3 surfaces and a Kaneko–Zagier equation for Jacobi forms, Selecta Math. 27 (2021) 64 | DOI

[32] M Kaneko, D Zagier, A generalized Jacobi theta function and quasimodular forms, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 165 | DOI

[33] Y H Kiem, J Li, Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013) 1025 | DOI

[34] B Kim, F Sato, A generalization of Fulton–MacPherson configuration spaces, Selecta Math. 15 (2009) 435 | DOI

[35] N Koblitz, Introduction to elliptic curves and modular forms, 97, Springer (1993) | DOI

[36] M Kool, R Thomas, Reduced classes and curve counting on surfaces, I : Theory, Algebr. Geom. 1 (2014) 334 | DOI

[37] A Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999) 495 | DOI

[38] Y P Lee, F Qu, A product formula for log Gromov–Witten invariants, J. Math. Soc. Japan 70 (2018) 229 | DOI

[39] M Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157 | DOI

[40] H Lho, Gromov–Witten invariants of Calabi–Yau fibrations, preprint (2019)

[41] H Lho, Gromov–Witten invariants of Calabi–Yau manifolds with two Kähler parameters, Int. Math. Res. Not. 2021 (2021) 7552 | DOI

[42] H Lho, R Pandharipande, Stable quotients and the holomorphic anomaly equation, Adv. Math. 332 (2018) 349 | DOI

[43] H Lho, R Pandharipande, Crepant resolution and the holomorphic anomaly equation for [C3∕Z3], Proc. Lond. Math. Soc. 119 (2019) 781 | DOI

[44] H Lho, R Pandharipande, Holomorphic anomaly equations for the formal quintic, Peking Math. J. 2 (2019) 1 | DOI

[45] J Li, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001) 509

[46] J Li, A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002) 199

[47] J Li, Lecture notes on relative GW-invariants, from: "Intersection theory and moduli" (editors E Arbarello, G Ellingsrud, L Goettsche), ICTP Lect. Notes 19, Abdus Salam Int. Cent. Theoret. Phys. (2004) 41

[48] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119 | DOI

[49] A Libgober, Elliptic genera, real algebraic varieties and quasi-Jacobi forms, from: "Topology of stratified spaces" (editors G Friedman, E Hunsicker, A Libgober, L Maxim), Math. Sci. Res. Inst. Publ. 58, Cambridge Univ. Press (2011) 95

[50] H Liu, Quasimaps and stable pairs, Forum Math. Sigma 9 (2021) | DOI

[51] E Looijenga, V A Lunts, A Lie algebra attached to a projective variety, Invent. Math. 129 (1997) 361 | DOI

[52] E Markman, On the monodromy of moduli spaces of sheaves on K3 surfaces, J. Algebraic Geom. 17 (2008) 29 | DOI

[53] E Markman, A survey of Torelli and monodromy results for holomorphic-symplectic varieties, from: "Complex and differential geometry" (editors W Ebeling, K Hulek, K Smoczyk), Springer Proc. Math. 8, Springer (2011) 257 | DOI

[54] E Markman, On the existence of universal families of marked irreducible holomorphic symplectic manifolds, Kyoto J. Math. 61 (2021) 207 | DOI

[55] D Maulik, Gromov–Witten theory of An–resolutions, Geom. Topol. 13 (2009) 1729 | DOI

[56] D Maulik, A Oblomkov, Donaldson–Thomas theory of An × P1, Compos. Math. 145 (2009) 1249 | DOI

[57] D Maulik, A Oblomkov, Quantum cohomology of the Hilbert scheme of points on An–resolutions, J. Amer. Math. Soc. 22 (2009) 1055 | DOI

[58] D Maulik, R Pandharipande, A topological view of Gromov–Witten theory, Topology 45 (2006) 887 | DOI

[59] D Maulik, R Pandharipande, Gromov–Witten theory and Noether–Lefschetz theory, from: "A celebration of algebraic geometry" (editors B Hassett, J McKernan, J Starr, R Vakil), Clay Math. Proc. 18, Amer. Math. Soc. (2013) 469

[60] D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov–Witten theory and Donaldson–Thomas theory, I, Compos. Math. 142 (2006) 1263 | DOI

[61] D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov–Witten theory and Donaldson–Thomas theory, II, Compos. Math. 142 (2006) 1286 | DOI

[62] D Maulik, R Pandharipande, R P Thomas, Curves on K3 surfaces and modular forms, J. Topol. 3 (2010) 937 | DOI

[63] D Maulik, A Oblomkov, A Okounkov, R Pandharipande, Gromov–Witten/Donaldson–Thomas correspondence for toric 3–folds, Invent. Math. 186 (2011) 435 | DOI

[64] T Milanov, Y Ruan, Y Shen, Gromov–Witten theory and cycle-valued modular forms, J. Reine Angew. Math. 735 (2018) 287 | DOI

[65] H Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. 145 (1997) 379 | DOI

[66] A Neguţ, G Oberdieck, Q Yin, Motivic decompositions for the Hilbert scheme of points of a K3 surface, J. Reine Angew. Math. 778 (2021) 65 | DOI

[67] D Nesterov, Quasimaps to moduli spaces of sheaves, preprint (2021)

[68] D Nesterov, Quasimaps to moduli spaces of sheaves on a K3 surface, Forum Math. Sigma 12 (2024) | DOI

[69] G Oberdieck, A Serre derivative for even weight Jacobi forms, preprint (2012)

[70] G Oberdieck, The enumerative geometry of the Hilbert schemes of points of a K3 surface, PhD thesis, ETH Zürich (2015) | DOI

[71] G Oberdieck, Gromov–Witten invariants of the Hilbert schemes of points of a K3 surface, Geom. Topol. 22 (2018) 323 | DOI

[72] G Oberdieck, On reduced stable pair invariants, Math. Z. 289 (2018) 323 | DOI

[73] G Oberdieck, Gromov–Witten theory of K3 × P1 and quasi-Jacobi forms, Int. Math. Res. Not. 2019 (2019) 4966 | DOI

[74] G Oberdieck, A Lie algebra action on the Chow ring of the Hilbert scheme of points of a K3 surface, Comment. Math. Helv. 96 (2021) 65 | DOI

[75] G Oberdieck, Gromov–Witten theory and Noether–Lefschetz theory for holomorphic-symplectic varieties, Forum Math. Sigma 10 (2022) | DOI

[76] G Oberdieck, Marked relative invariants and GW/PT correspondences, Adv. Math. 439 (2024) 109472 | DOI

[77] G Oberdieck, Multiple cover formulas for K3 geometries, wall-crossing, and Quot schemes, Geom. Topol. 28 (2024) 3221 | DOI

[78] G Oberdieck, R Pandharipande, Curve counting on K3 ×E, the Igusa cusp form χ10, and descendent integration, from: " surfaces and their moduli" (editors C Faber, G Farkas, G van der Geer), Progr. Math. 315, Birkhäuser (2016) 245 | DOI

[79] G Oberdieck, A Pixton, Holomorphic anomaly equations and the Igusa cusp form conjecture, Invent. Math. 213 (2018) 507 | DOI

[80] G Oberdieck, A Pixton, Gromov–Witten theory of elliptic fibrations : Jacobi forms and holomorphic anomaly equations, Geom. Topol. 23 (2019) 1415 | DOI

[81] G Oberdieck, A Pixton, Quantum cohomology of the Hilbert scheme of points on an elliptic surface, (2023)

[82] G Oberdieck, J Shen, Curve counting on elliptic Calabi–Yau threefolds via derived categories, J. Eur. Math. Soc. 22 (2020) 967 | DOI

[83] J Oesinghaus, Quasisymmetric functions and the Chow ring of the stack of expanded pairs, Res. Math. Sci. 6 (2019) 5 | DOI

[84] A Okounkov, R Pandharipande, Virasoro constraints for target curves, Invent. Math. 163 (2006) 47 | DOI

[85] A Okounkov, R Pandharipande, The local Donaldson–Thomas theory of curves, Geom. Topol. 14 (2010) 1503 | DOI

[86] A Okounkov, R Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010) 523 | DOI

[87] R Pandharipande, A Pixton, Gromov–Witten/pairs descendent correspondence for toric 3–folds, Geom. Topol. 18 (2014) 2747 | DOI

[88] R Pandharipande, A Pixton, Gromov–Witten/pairs correspondence for the quintic 3–fold, J. Amer. Math. Soc. 30 (2017) 389 | DOI

[89] , The Stacks project, electronic reference (2005–)

[90] M Verbitsky, Cohomology of compact hyper-Kähler manifolds and its applications, Geom. Funct. Anal. 6 (1996) 601 | DOI

[91] M Verbitsky, Mapping class group and a global Torelli theorem for hyperkähler manifolds, Duke Math. J. 162 (2013) 2929 | DOI

[92] X Wang, Quasi-modularity and holomorphic anomaly equation for the twisted Gromov–Witten theory : O(3) over P2, Acta Math. Sin. (Engl. Ser.) 35 (2019) 1945 | DOI

[93] X Wang, Finite generation and holomorphic anomaly equation for equivariant Gromov–Witten invariants of KP1×P1, Front. Math. 18 (2023) 17 | DOI

[94] A Weil, Elliptic functions according to Eisenstein and Kronecker, 88, Springer (1976) | DOI

[95] D Zagier, Periods of modular forms and Jacobi theta functions, Invent. Math. 104 (1991) 449 | DOI

[96] C Ziegler, Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg 59 (1989) 191 | DOI

[97] D Zvonkine, Intersection of double loci with boundary strata, unpublished note (2015)

Cité par Sources :