Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We provide an explicit computation over the integers of the bar version of the monopole Floer homology of a three-manifold in terms of a new invariant associated to its triple cup product, called extended cup homology. This refines previous computations over fields of characteristic zero by Kronheimer and Mrowka, who established a relationship to Atiyah and Segal’s twisted de Rham cohomology, and characteristic two by Lidman using surgery techniques in Heegaard Floer theory.
In order to do so, we first develop a general framework to study the homotopical properties of the cohomology of a dga twisted with respect a particular kind of Maurer–Cartan element called a twisting sequence. Then, for dgas equipped with the additional structure of a Hirsch algebra (which consists of certain higher operations that measure the failure of strict commutativity and related associativity properties), we develop a product on twisting sequences and a theory of rational characteristic classes. These are inspired by Kraines’ classical construction of higher Massey products and may be of independent interest.
We then compute the most important infinite family of such higher operations explicitly for the minimal cubical realization of the torus. Building on the work of Kronheimer and Mrowka, the determination of follows from these computations and certain functoriality properties of the rational characteristic classes.
Lin, Francesco 1 ; Miller Eismeier, Mike 2
@article{GT_2024_28_8_a4, author = {Lin, Francesco and Miller Eismeier, Mike}, title = {Monopoles, twisted integral homology, and {Hirsch} algebras}, journal = {Geometry & topology}, pages = {3697--3778}, publisher = {mathdoc}, volume = {28}, number = {8}, year = {2024}, doi = {10.2140/gt.2024.28.3697}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3697/} }
TY - JOUR AU - Lin, Francesco AU - Miller Eismeier, Mike TI - Monopoles, twisted integral homology, and Hirsch algebras JO - Geometry & topology PY - 2024 SP - 3697 EP - 3778 VL - 28 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3697/ DO - 10.2140/gt.2024.28.3697 ID - GT_2024_28_8_a4 ER -
Lin, Francesco; Miller Eismeier, Mike. Monopoles, twisted integral homology, and Hirsch algebras. Geometry & topology, Tome 28 (2024) no. 8, pp. 3697-3778. doi : 10.2140/gt.2024.28.3697. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3697/
[1] Twisted K–theory and cohomology, from: "Inspired by S S Chern" (editor P A Griffiths), Nankai Tracts Math. 11, World Sci. (2006) 5 | DOI
, ,[2] The double bar and cobar constructions, Compos. Math. 43 (1981) 331
,[3] Twisted tensor products, I, Ann. of Math. 69 (1959) 223 | DOI
,[4] The Pontrjagin dual of 3–dimensional spin bordism, preprint (2016)
, ,[5] Equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, Proc. Natl. Acad. Sci. USA 108 (2011) 8100 | DOI
, , ,[6] A note on the existence of U–cyclic elements in periodic Floer homology, (2021)
, , , ,[7] Lecture notes in algebraic topology, 35, Amer. Math. Soc. (2001) | DOI
, ,[8] Acyclic models, Amer. J. Math. 75 (1953) 189 | DOI
, ,[9] Homology and fibrations, I : Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1966) 199 | DOI
, ,[10] Algebraic topology, Cambridge Univ. Press (2002)
,[11] Quelques propriétés des produits de Steenrod, C. R. Acad. Sci. Paris 241 (1955) 923
,[12] The twisted Cartesian model for the double path fibration, Georgian Math. J. 22 (2015) 489 | DOI
, ,[13] A combinatorial E∞–algebra structure on cubical cochains and the Cartan–Serre map, Cah. Topol. Géom. Différ. Catég. 63 (2022) 387
, ,[14] Massey higher products, Trans. Amer. Math. Soc. 124 (1966) 431 | DOI
,[15] Operads, algebras, modules and motives, 233, Soc. Math. France (1995)
, ,[16] Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI
, ,[17] HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, Geom. Topol. 24 (2020) 2829 | DOI
, , ,[18] In which I try to get the signs right for once, preprint (2013)
,[19] Triple cup products in Heegaard Floer homology, PhD thesis, University of California, Los Angeles (2012)
,[20] Triple products and cohomological invariants for closed 3–manifolds, Michigan Math. J. 56 (2008) 265 | DOI
,[21] Singular homology theory, 70, Springer (1980) | DOI
,[22] Parametrized homotopy theory, 132, Amer. Math. Soc. (2006) | DOI
, ,[23] A user’s guide to spectral sequences, 58, Cambridge Univ. Press (2001) | DOI
,[24] A finitely presented E∞–prop, I : Algebraic context, High. Struct. 4 (2020) 1 | DOI
,[25] Cohomology operations and applications in homotopy theory, Harper Row (1968)
, ,[26] On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185 | DOI
, ,[27] Filtered Hirsch algebras, Trans. A. Razmadze Math. Inst. 170 (2016) 114 | DOI
,[28] Homologie singulière des espaces fibrés : applications, Ann. of Math. 54 (1951) 425 | DOI
,[29] Products of cocycles and extensions of mappings, Ann. of Math. 48 (1947) 290 | DOI
,[30] On the intersection ring of compact three manifolds, Topology 14 (1975) 275 | DOI
,[31] The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117 | DOI
,[32] Homotopy Gerstenhaber algebras, from: "Conférence Moshé Flato 1999, II" (editors G Dito, D Sternheimer), Math. Phys. Stud. 22, Kluwer Acad. (2000) 307 | DOI
,Cité par Sources :