Reeb flows transverse to foliations
Geometry & topology, Tome 28 (2024) no. 8, pp. 3661-3695.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let be a cooriented C2 foliation on a closed, oriented 3–manifold. We show that T can be perturbed to a contact structure with Reeb flow transverse to if and only if does not support an invariant transverse measure. The resulting Reeb flow has no contractible orbits. This answers a question of Colin and Honda. The main technical tool in our proof is leafwise Brownian motion which we use to construct good transverse measures for ; this gives a new perspective on the Eliashberg–Thurston theorem.

DOI : 10.2140/gt.2024.28.3661
Keywords: Reeb flow, contact structure, foliation

Zung, Jonathan 1

1 Department of Mathematics, Princeton University, Princeton, NJ, United States
@article{GT_2024_28_8_a3,
     author = {Zung, Jonathan},
     title = {Reeb flows transverse to foliations},
     journal = {Geometry & topology},
     pages = {3661--3695},
     publisher = {mathdoc},
     volume = {28},
     number = {8},
     year = {2024},
     doi = {10.2140/gt.2024.28.3661},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3661/}
}
TY  - JOUR
AU  - Zung, Jonathan
TI  - Reeb flows transverse to foliations
JO  - Geometry & topology
PY  - 2024
SP  - 3661
EP  - 3695
VL  - 28
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3661/
DO  - 10.2140/gt.2024.28.3661
ID  - GT_2024_28_8_a3
ER  - 
%0 Journal Article
%A Zung, Jonathan
%T Reeb flows transverse to foliations
%J Geometry & topology
%D 2024
%P 3661-3695
%V 28
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3661/
%R 10.2140/gt.2024.28.3661
%F GT_2024_28_8_a3
Zung, Jonathan. Reeb flows transverse to foliations. Geometry & topology, Tome 28 (2024) no. 8, pp. 3661-3695. doi : 10.2140/gt.2024.28.3661. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3661/

[1] E Bao, K Honda, Definition of cylindrical contact homology in dimension three, J. Topol. 11 (2018) 1002 | DOI

[2] C Bonatti, S Firmo, Feuilles compactes d’un feuilletage générique en codimension 1, Ann. Sci. École Norm. Sup. 27 (1994) 407 | DOI

[3] J Bowden, Approximating C0–foliations by contact structures, Geom. Funct. Anal. 26 (2016) 1255 | DOI

[4] J Bowden, Contact structures, deformations and taut foliations, Geom. Topol. 20 (2016) 697 | DOI

[5] D Calegari, Leafwise smoothing laminations, Algebr. Geom. Topol. 1 (2001) 579 | DOI

[6] D Calegari, Foliations and the geometry of 3–manifolds, Oxford Univ. Press (2007)

[7] A Candel, The harmonic measures of Lucy Garnett, Adv. Math. 176 (2003) 187 | DOI

[8] A Candel, L Conlon, Foliations, I, 23, Amer. Math. Soc. (2000) | DOI

[9] A Candel, L Conlon, Foliations, II, 60, Amer. Math. Soc. (2003) | DOI

[10] S Y Cheng, P Li, S T Yau, On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math. 103 (1981) 1021 | DOI

[11] V Colin, K Honda, Constructions contrôlées de champs de Reeb et applications, Geom. Topol. 9 (2005) 2193 | DOI

[12] V Colin, K Honda, Foliations, contact structures and their interactions in dimension three, from: "Surveys in –manifold topology and geometry" (editors I Agol, D Gabai), Surv. Differ. Geom. 25, International (2022) 71 | DOI

[13] B Deroin, V Kleptsyn, Random conformal dynamical systems, Geom. Funct. Anal. 17 (2007) 1043 | DOI

[14] T C Dinh, N Sibony, Introduction to the theory of currents, lecture notes (2005)

[15] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445

[16] L Garnett, Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal. 51 (1983) 285 | DOI

[17] S E Goodman, J F Plante, Holonomy and averaging in foliated sets, J. Differential Geom. 14 (1979) 401

[18] E P Hsu, Stochastic analysis on manifolds, 38, Amer. Math. Soc. (2002) | DOI

[19] I Ishii, M Ishikawa, Y Koda, H Naoe, Positive flow-spines and contact 3–manifolds, Ann. Mat. Pura Appl. 202 (2023) 2091 | DOI

[20] W H Kazez, R Roberts, C0 approximations of foliations, Geom. Topol. 21 (2017) 3601 | DOI

[21] T Li, Laminar branched surfaces in 3–manifolds, Geom. Topol. 6 (2002) 153 | DOI

[22] P Mörters, Y Peres, Brownian motion, 30, Cambridge Univ. Press (2010) | DOI

[23] D Ruelle, D Sullivan, Currents, flows and diffeomorphisms, Topology 14 (1975) 319 | DOI

[24] R Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965) 79 | DOI

[25] D Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math. 36 (1976) 225 | DOI

[26] D Tischler, On fibering certain foliated manifolds over S1, Topology 9 (1970) 153 | DOI

[27] T Vogel, On the uniqueness of the contact structure approximating a foliation, Geom. Topol. 20 (2016) 2439 | DOI

[28] B Zhang, Monopoles and foliations without holonomy-invariant transverse measure, J. Symplectic Geom. 20 (2022) 191 | DOI

Cité par Sources :