Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a cooriented foliation on a closed, oriented –manifold. We show that can be perturbed to a contact structure with Reeb flow transverse to if and only if does not support an invariant transverse measure. The resulting Reeb flow has no contractible orbits. This answers a question of Colin and Honda. The main technical tool in our proof is leafwise Brownian motion which we use to construct good transverse measures for ; this gives a new perspective on the Eliashberg–Thurston theorem.
Zung, Jonathan 1
@article{GT_2024_28_8_a3, author = {Zung, Jonathan}, title = {Reeb flows transverse to foliations}, journal = {Geometry & topology}, pages = {3661--3695}, publisher = {mathdoc}, volume = {28}, number = {8}, year = {2024}, doi = {10.2140/gt.2024.28.3661}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3661/} }
Zung, Jonathan. Reeb flows transverse to foliations. Geometry & topology, Tome 28 (2024) no. 8, pp. 3661-3695. doi : 10.2140/gt.2024.28.3661. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3661/
[1] Definition of cylindrical contact homology in dimension three, J. Topol. 11 (2018) 1002 | DOI
, ,[2] Feuilles compactes d’un feuilletage générique en codimension 1, Ann. Sci. École Norm. Sup. 27 (1994) 407 | DOI
, ,[3] Approximating C0–foliations by contact structures, Geom. Funct. Anal. 26 (2016) 1255 | DOI
,[4] Contact structures, deformations and taut foliations, Geom. Topol. 20 (2016) 697 | DOI
,[5] Leafwise smoothing laminations, Algebr. Geom. Topol. 1 (2001) 579 | DOI
,[6] Foliations and the geometry of 3–manifolds, Oxford Univ. Press (2007)
,[7] The harmonic measures of Lucy Garnett, Adv. Math. 176 (2003) 187 | DOI
,[8] Foliations, I, 23, Amer. Math. Soc. (2000) | DOI
, ,[9] Foliations, II, 60, Amer. Math. Soc. (2003) | DOI
, ,[10] On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math. 103 (1981) 1021 | DOI
, , ,[11] Constructions contrôlées de champs de Reeb et applications, Geom. Topol. 9 (2005) 2193 | DOI
, ,[12] Foliations, contact structures and their interactions in dimension three, from: "Surveys in –manifold topology and geometry" (editors I Agol, D Gabai), Surv. Differ. Geom. 25, International (2022) 71 | DOI
, ,[13] Random conformal dynamical systems, Geom. Funct. Anal. 17 (2007) 1043 | DOI
, ,[14] Introduction to the theory of currents, lecture notes (2005)
, ,[15] Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445
,[16] Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal. 51 (1983) 285 | DOI
,[17] Holonomy and averaging in foliated sets, J. Differential Geom. 14 (1979) 401
, ,[18] Stochastic analysis on manifolds, 38, Amer. Math. Soc. (2002) | DOI
,[19] Positive flow-spines and contact 3–manifolds, Ann. Mat. Pura Appl. 202 (2023) 2091 | DOI
, , , ,[20] C0 approximations of foliations, Geom. Topol. 21 (2017) 3601 | DOI
, ,[21] Laminar branched surfaces in 3–manifolds, Geom. Topol. 6 (2002) 153 | DOI
,[22] Brownian motion, 30, Cambridge Univ. Press (2010) | DOI
, ,[23] Currents, flows and diffeomorphisms, Topology 14 (1975) 319 | DOI
, ,[24] Foliations and pseudogroups, Amer. J. Math. 87 (1965) 79 | DOI
,[25] Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math. 36 (1976) 225 | DOI
,[26] On fibering certain foliated manifolds over S1, Topology 9 (1970) 153 | DOI
,[27] On the uniqueness of the contact structure approximating a foliation, Geom. Topol. 20 (2016) 2439 | DOI
,[28] Monopoles and foliations without holonomy-invariant transverse measure, J. Symplectic Geom. 20 (2022) 191 | DOI
,Cité par Sources :