The string coproduct “knows” Reidemeister/Whitehead torsion
Geometry & topology, Tome 28 (2024) no. 8, pp. 3643-3659.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the string coproduct is not homotopy invariant. More precisely, we show that the (reduced) coproducts are different on L(1,7) and L(2,7). Moreover, the coproduct on L(k,7) can be expressed in terms of the Reidemeister torsion and hence transforms with respect to the Whitehead torsion of a homotopy equivalence. The string coproduct can thereby be used to compute the image of the Whitehead torsion under the Dennis trace map.

DOI : 10.2140/gt.2024.28.3643
Keywords: string topology, lens spaces, Reidemeister torsion, Whitehead torsion

Naef, Florian 1

1 Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark, School of Mathematics, Trinity College Dublin, Dublin, Ireland
@article{GT_2024_28_8_a2,
     author = {Naef, Florian},
     title = {The string coproduct {\textquotedblleft}knows{\textquotedblright} {Reidemeister/Whitehead} torsion},
     journal = {Geometry & topology},
     pages = {3643--3659},
     publisher = {mathdoc},
     volume = {28},
     number = {8},
     year = {2024},
     doi = {10.2140/gt.2024.28.3643},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3643/}
}
TY  - JOUR
AU  - Naef, Florian
TI  - The string coproduct “knows” Reidemeister/Whitehead torsion
JO  - Geometry & topology
PY  - 2024
SP  - 3643
EP  - 3659
VL  - 28
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3643/
DO  - 10.2140/gt.2024.28.3643
ID  - GT_2024_28_8_a2
ER  - 
%0 Journal Article
%A Naef, Florian
%T The string coproduct “knows” Reidemeister/Whitehead torsion
%J Geometry & topology
%D 2024
%P 3643-3659
%V 28
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3643/
%R 10.2140/gt.2024.28.3643
%F GT_2024_28_8_a2
Naef, Florian. The string coproduct “knows” Reidemeister/Whitehead torsion. Geometry & topology, Tome 28 (2024) no. 8, pp. 3643-3659. doi : 10.2140/gt.2024.28.3643. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3643/

[1] A S Cattaneo, P Mnev, N Reshetikhin, A cellular topological field theory, Comm. Math. Phys. 374 (2020) 1229 | DOI

[2] M Chas, D Sullivan, String topology, preprint (1999)

[3] M Chas, D Sullivan, Closed string operators in topology leading to Lie bialgebras and higher string algebra, from: "The legacy of Niels Henrik Abel" (editors O A Laudal, R Piene), Springer (2004) 771 | DOI

[4] R L Cohen, J D S Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002) 773 | DOI

[5] R L Cohen, J R Klein, D Sullivan, The homotopy invariance of the string topology loop product and string bracket, J. Topol. 1 (2008) 391 | DOI

[6] M C Crabb, Loop homology as fibrewise homology, Proc. Edinb. Math. Soc. 51 (2008) 27 | DOI

[7] N Hingston, N Wahl, Product and coproduct in string topology, Ann. Sci. Éc. Norm. Supér. (4) 56 (2023) 1381 | DOI

[8] J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358 | DOI

[9] P Mnev, Lecture notes on torsions, lecture notes (2014)

[10] F Naef, T Willwacher, String topology and configuration spaces of two points, preprint (2019)

[11] F Naef, M Rivera, N Wahl, String topology in three flavors, EMS Surv. Math. Sci. 10 (2023) 243 | DOI

Cité par Sources :