Weak del Pezzo surfaces with global vector fields
Geometry & topology, Tome 28 (2024) no. 8, pp. 3565-3641.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We classify smooth weak del Pezzo surfaces with global vector fields over an arbitrary algebraically closed field k of arbitrary characteristic p 0. We give a complete description of the configuration of (1)– and (2)–curves on these surfaces and calculate the identity component of their automorphism schemes. It turns out that there are 53 distinct families of such surfaces if p2,3, while there are 61 such families if p = 3 and 75 such families if p = 2. Each of these families has at most one moduli. As a byproduct of our classification, it follows that weak del Pezzo surfaces with nonreduced automorphism schemes exist over k if and only if p {2,3}.

DOI : 10.2140/gt.2024.28.3565
Keywords: del Pezzo surfaces, vector fields, automorphisms, group schemes, positive characteristic

Martin, Gebhard 1 ; Stadlmayr, Claudia 2

1 Mathematisches Institut, Universität Bonn, Bonn, Germany
2 Zentrum Mathematik, Technische Universität München, Munich, Germany
@article{GT_2024_28_8_a1,
     author = {Martin, Gebhard and Stadlmayr, Claudia},
     title = {Weak del {Pezzo} surfaces with global vector fields},
     journal = {Geometry & topology},
     pages = {3565--3641},
     publisher = {mathdoc},
     volume = {28},
     number = {8},
     year = {2024},
     doi = {10.2140/gt.2024.28.3565},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3565/}
}
TY  - JOUR
AU  - Martin, Gebhard
AU  - Stadlmayr, Claudia
TI  - Weak del Pezzo surfaces with global vector fields
JO  - Geometry & topology
PY  - 2024
SP  - 3565
EP  - 3641
VL  - 28
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3565/
DO  - 10.2140/gt.2024.28.3565
ID  - GT_2024_28_8_a1
ER  - 
%0 Journal Article
%A Martin, Gebhard
%A Stadlmayr, Claudia
%T Weak del Pezzo surfaces with global vector fields
%J Geometry & topology
%D 2024
%P 3565-3641
%V 28
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3565/
%R 10.2140/gt.2024.28.3565
%F GT_2024_28_8_a1
Martin, Gebhard; Stadlmayr, Claudia. Weak del Pezzo surfaces with global vector fields. Geometry & topology, Tome 28 (2024) no. 8, pp. 3565-3641. doi : 10.2140/gt.2024.28.3565. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3565/

[1] M Brion, Some structure theorems for algebraic groups, from: "Algebraic groups: structure and actions" (editor M B Can), Proc. Sympos. Pure Math. 94, Amer. Math. Soc. (2017) 53 | DOI

[2] I Cheltsov, Y Prokhorov, Del Pezzo surfaces with infinite automorphism groups, Algebr. Geom. 8 (2021) 319 | DOI

[3] M Demazure, Surfaces de Del Pezzo, III: Positions presque generales, from: "Séminaire sur les singularités des surfaces" (editors M Demazure, H C Pinkham, B Teissier), Lecture Notes in Math. 777, Springer (1980) 36 | DOI

[4] I V Dolgachev, Classical algebraic geometry: a modern view, Cambridge Univ. Press (2012) | DOI

[5] I Dolgachev, A Duncan, Automorphisms of cubic surfaces in positive characteristic, Izv. Ross. Akad. Nauk Ser. Mat. 83 (2019) 15 | DOI

[6] Y I Manin, Cubic forms, 4, North-Holland (1986)

[7] G Martin, Infinitesimal automorphisms of algebraic varieties and vector fields on elliptic surfaces, Algebra Number Theory 16 (2022) 1655 | DOI

[8] M Maruyama, On automorphism groups of ruled surfaces, J. Math. Kyoto Univ. 11 (1971) 89 | DOI

[9] H Matsumura, F Oort, Representability of group functors, and automorphisms of algebraic schemes, Invent. Math. 4 (1967) 1 | DOI

[10] G Neuman, Rational surfaces with too many vector fields, Proc. Amer. Math. Soc. 76 (1979) 189 | DOI

[11] D Perrin, Approximation des schémas en groupes, quasi compacts sur un corps, Bull. Soc. Math. France 104 (1976) 323

Cité par Sources :