Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We classify smooth weak del Pezzo surfaces with global vector fields over an arbitrary algebraically closed field of arbitrary characteristic . We give a complete description of the configuration of – and –curves on these surfaces and calculate the identity component of their automorphism schemes. It turns out that there are distinct families of such surfaces if , while there are such families if and such families if . Each of these families has at most one moduli. As a byproduct of our classification, it follows that weak del Pezzo surfaces with nonreduced automorphism schemes exist over if and only if .
Martin, Gebhard 1 ; Stadlmayr, Claudia 2
@article{GT_2024_28_8_a1, author = {Martin, Gebhard and Stadlmayr, Claudia}, title = {Weak del {Pezzo} surfaces with global vector fields}, journal = {Geometry & topology}, pages = {3565--3641}, publisher = {mathdoc}, volume = {28}, number = {8}, year = {2024}, doi = {10.2140/gt.2024.28.3565}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3565/} }
TY - JOUR AU - Martin, Gebhard AU - Stadlmayr, Claudia TI - Weak del Pezzo surfaces with global vector fields JO - Geometry & topology PY - 2024 SP - 3565 EP - 3641 VL - 28 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3565/ DO - 10.2140/gt.2024.28.3565 ID - GT_2024_28_8_a1 ER -
Martin, Gebhard; Stadlmayr, Claudia. Weak del Pezzo surfaces with global vector fields. Geometry & topology, Tome 28 (2024) no. 8, pp. 3565-3641. doi : 10.2140/gt.2024.28.3565. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3565/
[1] Some structure theorems for algebraic groups, from: "Algebraic groups: structure and actions" (editor M B Can), Proc. Sympos. Pure Math. 94, Amer. Math. Soc. (2017) 53 | DOI
,[2] Del Pezzo surfaces with infinite automorphism groups, Algebr. Geom. 8 (2021) 319 | DOI
, ,[3] Surfaces de Del Pezzo, III: Positions presque generales, from: "Séminaire sur les singularités des surfaces" (editors M Demazure, H C Pinkham, B Teissier), Lecture Notes in Math. 777, Springer (1980) 36 | DOI
,[4] Classical algebraic geometry: a modern view, Cambridge Univ. Press (2012) | DOI
,[5] Automorphisms of cubic surfaces in positive characteristic, Izv. Ross. Akad. Nauk Ser. Mat. 83 (2019) 15 | DOI
, ,[6] Cubic forms, 4, North-Holland (1986)
,[7] Infinitesimal automorphisms of algebraic varieties and vector fields on elliptic surfaces, Algebra Number Theory 16 (2022) 1655 | DOI
,[8] On automorphism groups of ruled surfaces, J. Math. Kyoto Univ. 11 (1971) 89 | DOI
,[9] Representability of group functors, and automorphisms of algebraic schemes, Invent. Math. 4 (1967) 1 | DOI
, ,[10] Rational surfaces with too many vector fields, Proc. Amer. Math. Soc. 76 (1979) 189 | DOI
,[11] Approximation des schémas en groupes, quasi compacts sur un corps, Bull. Soc. Math. France 104 (1976) 323
,Cité par Sources :