Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the dependence of the embedding calculus Taylor tower on the smooth structures of the source and target. We prove that embedding calculus does not distinguish exotic smooth structures in dimension , implying a negative answer to a question of Viro. In contrast, we show that embedding calculus does distinguish certain exotic spheres in higher dimensions. As a technical tool of independent interest, we prove an isotopy extension theorem for the limit of the embedding calculus tower, which we use to investigate several further examples.
Knudsen, Ben 1 ; Kupers, Alexander 2
@article{GT_2024_28_1_a4, author = {Knudsen, Ben and Kupers, Alexander}, title = {Embedding calculus and smooth structures}, journal = {Geometry & topology}, pages = {353--392}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2024}, doi = {10.2140/gt.2024.28.353}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.353/} }
Knudsen, Ben; Kupers, Alexander. Embedding calculus and smooth structures. Geometry & topology, Tome 28 (2024) no. 1, pp. 353-392. doi : 10.2140/gt.2024.28.353. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.353/
[1] From manifolds to invariants of En–algebras, preprint (2012)
,[2] On stable diffeomorphism of exotic spheres in the metastable range, Canad. J. Math. 23 (1971) 579 | DOI
,[3] Spaces of knotted circles and exotic smooth structures, Canad. J. Math. 74 (2022) 1 | DOI
, ,[4] A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc. 359 (2007) 2043 | DOI
,[5] Manifold calculus and homotopy sheaves, Homology Homotopy Appl. 15 (2013) 361 | DOI
, ,[6] Spaces of smooth embeddings and configuration categories, J. Topol. 11 (2018) 65 | DOI
, ,[7] A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960) 74 | DOI
,[8] The homotopy type of the space of diffeomorphisms, I, Trans. Amer. Math. Soc. 196 (1974) 1 | DOI
, ,[9] The homotopy type of the space of diffeomorphisms, II, Trans. Amer. Math. Soc. 196 (1974) 37 | DOI
, ,[10] Topological hypercovers and A1–realizations, Math. Z. 246 (2004) 667 | DOI
, ,[11] Deformations of spaces of imbeddings, Ann. of Math. 93 (1971) 63 | DOI
, ,[12] Topology of 4–manifolds, 39, Princeton Univ. Press (1990)
, ,[13] Moduli spaces of manifolds : a user’s guide, from: "Handbook of homotopy theory" (editor H Miller), CRC (2020) 443
, ,[14] Multiple disjunction for spaces of smooth embeddings, J. Topol. 8 (2015) 651 | DOI
, ,[15] A Haefliger style description of the embedding calculus tower, Topology 42 (2003) 509 | DOI
, , ,[16] Embeddings from the point of view of immersion theory, II, Geom. Topol. 3 (1999) 103 | DOI
, ,[17] Profinite completion of operads and the Grothendieck–Teichmüller group, Adv. Math. 321 (2017) 326 | DOI
,[18] On the normal bundle of a homotopy sphere embedded in Euclidean space, Topology 3 (1965) 173 | DOI
, , ,[19] Fibre bundles, 20, Springer (1994) | DOI
,[20] Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960) 161
,[21] On higher dimensional knots, from: "Differential and combinatorial topology (a symposium in honor of Marston Morse)", Princeton Univ. Press (1965) 105
,[22] Foundational essays on topological manifolds, smoothings, and triangulations, 88, Princeton Univ. Press (1977)
, ,[23] Microbundles are fibre bundles, Ann. of Math. 80 (1964) 190 | DOI
,[24] Feynman diagrams and low-dimensional topology, from: "First European Congress of Mathematics, II" (editors A Joseph, F Mignot, F Murat, B Prum, R Rentschler), Progr. Math. 120, Birkhäuser (1994) 97 | DOI
,[25] Dwyer–Kan equivalences induce equivalences on topologically enriched presheaves, preprint (2017)
,[26] Embedding calculus for surfaces, preprint (2021)
, ,[27] The Disc–structure space, preprint (2022)
, ,[28] Some finiteness results for groups of automorphisms of manifolds, Geom. Topol. 23 (2019) 2277 | DOI
,[29] The cohomology of Torelli groups is algebraic, Forum Math. Sigma 8 (2020) | DOI
, ,[30] A classification of differentiable knots, Ann. of Math. 82 (1965) 15 | DOI
,[31] Higher algebra, preprint (2017)
,[32] Some Whitehead products in Sn, Topology 4 (1965) 17 | DOI
,[33] The metastable homotopy of Sn, 72, Amer. Math. Soc. (1967) 81 | DOI
,[34] A new infinite family in 2π∗s, Topology 16 (1977) 249 | DOI
,[35] The EHP sequence and periodic homotopy, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 397 | DOI
, ,[36] On the normal bundle of a sphere imbedded in Euclidean space, Proc. Amer. Math. Soc. 10 (1959) 959 | DOI
,[37] Microbundles, I, Topology 3 (1964) 53 | DOI
,[38] On tautological classes of fibre bundles and self-embedding calculus, PhD thesis, University of Cambridge (2020)
,[39] On the Hauptvermutung, from: "The Hauptvermutung book", –Monogr. Math. 1, Kluwer (1996) 3 | DOI
,[40] Deformation of homeomorphisms on stratified sets, Comment. Math. Helv. 47 (1972) 123 | DOI
,[41] Context-free manifold calculus and the Fulton–MacPherson operad, Algebr. Geom. Topol. 13 (2013) 1243 | DOI
,[42] Space of smooth 1–knots in a 4–manifold : is its algebraic topology sensitive to smooth structures ?, Arnold Math. J. 1 (2015) 83 | DOI
,[43] Finite type knot invariants and the calculus of functors, Compos. Math. 142 (2006) 222 | DOI
,[44] Differential topology, 156, Cambridge Univ. Press (2016) | DOI
,[45] Some exotic nontrivial elements of the rational homotopy groups of Diff(S4), preprint (2018)
,[46] Embeddings from the point of view of immersion theory, I, Geom. Topol. 3 (1999) 67 | DOI
,[47] Rational Pontryagin classes of Euclidean fiber bundles, Geom. Topol. 25 (2021) 3351 | DOI
,Cité par Sources :