Chromatic cyclotomic extensions
Geometry & topology, Tome 28 (2024) no. 8, pp. 3511-3564.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct Galois extensions of the T(n)–local sphere, lifting all finite abelian Galois extensions of the K(n)–local sphere. This is achieved by realizing them as higher semiadditive analogues of cyclotomic extensions. Combining this with a general form of Kummer theory, we lift certain elements from the K(n)–local Picard group to the T(n)–local Picard group.

DOI : 10.2140/gt.2024.28.3511
Keywords: chromatic homotopy, cyclotomic extensions, Picard, Galois

Carmeli, Shachar 1 ; Schlank, Tomer M 2 ; Yanovski, Lior 3

1 Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel
2 Einstein Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel
3 Max Planck Institute for Mathematics, Bonn, Germany, Einstein Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel
@article{GT_2024_28_8_a0,
     author = {Carmeli, Shachar and Schlank, Tomer M and Yanovski, Lior},
     title = {Chromatic cyclotomic extensions},
     journal = {Geometry & topology},
     pages = {3511--3564},
     publisher = {mathdoc},
     volume = {28},
     number = {8},
     year = {2024},
     doi = {10.2140/gt.2024.28.3511},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3511/}
}
TY  - JOUR
AU  - Carmeli, Shachar
AU  - Schlank, Tomer M
AU  - Yanovski, Lior
TI  - Chromatic cyclotomic extensions
JO  - Geometry & topology
PY  - 2024
SP  - 3511
EP  - 3564
VL  - 28
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3511/
DO  - 10.2140/gt.2024.28.3511
ID  - GT_2024_28_8_a0
ER  - 
%0 Journal Article
%A Carmeli, Shachar
%A Schlank, Tomer M
%A Yanovski, Lior
%T Chromatic cyclotomic extensions
%J Geometry & topology
%D 2024
%P 3511-3564
%V 28
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3511/
%R 10.2140/gt.2024.28.3511
%F GT_2024_28_8_a0
Carmeli, Shachar; Schlank, Tomer M; Yanovski, Lior. Chromatic cyclotomic extensions. Geometry & topology, Tome 28 (2024) no. 8, pp. 3511-3564. doi : 10.2140/gt.2024.28.3511. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3511/

[1] M Ando, A J Blumberg, D Gepner, Parametrized spectra, multiplicative Thom spectra and the twisted Umkehr map, Geom. Topol. 22 (2018) 3761 | DOI

[2] C Ausoni, J Rognes, The chromatic red-shift in algebraic K–theory, Enseign. Math. 54 (2008) 13 | DOI

[3] J Ax, Zeros of polynomials over local fields : the Galois action, J. Algebra 15 (1970) 417 | DOI

[4] A Baker, B Richter, Invertible modules for commutative S–algebras with residue fields, Manuscripta Math. 118 (2005) 99 | DOI

[5] A Baker, B Richter, Galois extensions of Lubin–Tate spectra, Homology Homotopy Appl. 10 (2008) 27 | DOI

[6] T Barthel, A Beaudry, Chromatic structures in stable homotopy theory, from: "Handbook of homotopy theory" (editor H Miller), CRC Press (2020) 163

[7] T Barthel, A Beaudry, P G Goerss, V Stojanoska, Constructing the determinant sphere using a Tate twist, Math. Z. 301 (2022) 255 | DOI

[8] T Barthel, S Carmeli, T M Schlank, L Yanovski, The chromatic Fourier transform, Forum Math. Pi 12 (2024) | DOI

[9] A Beaudry, M Behrens, P Bhattacharya, D Culver, Z Xu, The telescope conjecture at height 2 and the tmf resolution, J. Topol. 14 (2021) 1243 | DOI

[10] B J Birch, Cyclotomic fields and Kummer extensions, from: "Algebraic number theory" (editors J W S Cassels, A Fröhlich), Academic (1967) 85

[11] I Bobkova, P G Goerss, Topological resolutions in K(2)–local homotopy theory at the prime 2, J. Topol. 11 (2018) 918 | DOI

[12] S Carmeli, On the strict Picard spectrum of commutative ring spectra, Compos. Math. 159 (2023) 1872 | DOI

[13] S Carmeli, T M Schlank, L Yanovski, Ambidexterity and height, Adv. Math. 385 (2021) 107763 | DOI

[14] S Carmeli, T M Schlank, L Yanovski, Ambidexterity in chromatic homotopy theory, Invent. Math. 228 (2022) 1145 | DOI

[15] D Clausen, A Mathew, N Naumann, J Noel, Descent and vanishing in chromatic algebraic K–theory via group actions, Ann. Sci. Éc. Norm. Supér. 57 (2024) 1135 | DOI

[16] S Devalapurkar, Roots of unity in K(n)–local rings, Proc. Amer. Math. Soc. 148 (2020) 3187 | DOI

[17] E S Devinatz, M J Hopkins, The action of the Morava stabilizer group on the Lubin–Tate moduli space of lifts, Amer. J. Math. 117 (1995) 669 | DOI

[18] E S Devinatz, M J Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004) 1 | DOI

[19] D Gepner, M Groth, T Nikolaus, Universality of multiplicative infinite loop space machines, Algebr. Geom. Topol. 15 (2015) 3107 | DOI

[20] S Glasman, Day convolution for ∞–categories, Math. Res. Lett. 23 (2016) 1369 | DOI

[21] P Goerss, H W Henn, M Mahowald, C Rezk, A resolution of the K(2)–local sphere at the prime 3, Ann. of Math. 162 (2005) 777 | DOI

[22] P Goerss, H W Henn, M Mahowald, C Rezk, On Hopkins’ Picard groups for the prime 3 and chromatic level 2, J. Topol. 8 (2015) 267 | DOI

[23] P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, from: "Structured ring spectra" (editors A Baker, B Richter), Lond. Math. Soc. Lect. Note Ser. 315, Cambridge Univ. Press (2004) 151 | DOI

[24] J Hahn, D Wilson, Redshift and multiplication for truncated Brown–Peterson spectra, Ann. of Math. 196 (2022) 1277 | DOI

[25] D Heard, Morava modules and the K(n)–local Picard group, Bull. Aust. Math. Soc. 92 (2015) 171 | DOI

[26] G Heuts, Lie algebras and vn–periodic spaces, Ann. of Math. 193 (2021) 223 | DOI

[27] M Hopkins, J Lurie, Ambidexterity in K(n)–local stable homotopy theory, preprint (2013)

[28] M J Hopkins, M Mahowald, H Sadofsky, Constructions of elements in Picard groups, from: "Topology and representation theory" (editors E M Friedlander, M E Mahowald), Contemp. Math. 158, Amer. Math. Soc. (1994) 89 | DOI

[29] M J Hopkins, H R Miller, Elliptic curves and stable homotopy, I, from: "Topological modular forms" (editors C L Douglas, J Francis, A G Henriques, M A Hill), Math. Surv. Monogr. 201, Amer. Math. Soc. (2014) 209 | DOI

[30] M J Hopkins, J H Smith, Nilpotence and stable homotopy theory, II, Ann. of Math. 148 (1998) 1 | DOI

[31] O Lader, Une résolution projective pour le second groupe de Morava pour p ≥ 5 et applications, PhD thesis, Université de Strasbourg (2013)

[32] M Land, A Mathew, L Meier, G Tamme, Purity in chromatically localized algebraic K–theory, J. Amer. Math. Soc. (2024) | DOI

[33] T Lawson, Adjoining roots in homotopy theory, preprint (2020)

[34] J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) | DOI

[35] J Lurie, Higher algebra, preprint (2017)

[36] J Lurie, Elliptic cohomology, II: Orientations, preprint (2018)

[37] M Mahowald, bo–resolutions, Pacific J. Math. 92 (1981) 365 | DOI

[38] A Mathew, The Galois group of a stable homotopy theory, Adv. Math. 291 (2016) 403 | DOI

[39] A Mathew, V Stojanoska, The Picard group of topological modular forms via descent theory, Geom. Topol. 20 (2016) 3133 | DOI

[40] J P May, The additivity of traces in triangulated categories, Adv. Math. 163 (2001) 34 | DOI

[41] H R Miller, On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space, J. Pure Appl. Algebra 20 (1981) 287 | DOI

[42] J S Milne, Class field theory, course notes (1997)

[43] T Nakayama, Y Matsushima, Über die multiplikative Gruppe einer p–adischen Divisionsalgebra, Proc. Imp. Acad. Tokyo 19 (1943) 622

[44] K Ponto, M Shulman, Traces in symmetric monoidal categories, Expo. Math. 32 (2014) 248 | DOI

[45] K Ponto, M Shulman, The linearity of traces in monoidal categories and bicategories, Theory Appl. Categ. 31 (2016) 594

[46] D C Ravenel, Nilpotence and periodicity in stable homotopy theory, 128, Princeton Univ. Press (1992)

[47] D C Ravenel, W S Wilson, The Morava K–theories of Eilenberg–Mac Lane spaces and the Conner–Floyd conjecture, Amer. J. Math. 102 (1980) 691 | DOI

[48] J Rognes, Stably dualizable groups, preprint (2005)

[49] J Rognes, Galois extensions of structured ring spectra: stably dualizable groups, 898, Amer. Math. Soc. (2008) | DOI

[50] R Schwänzl, R M Vogt, F Waldhausen, Adjoining roots of unity to E∞ ring spectra in good cases : a remark, from: "Homotopy invariant algebraic structures" (editors J P Meyer, J Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc. (1999) 245 | DOI

[51] C Westerland, A higher chromatic analogue of the image of J, Geom. Topol. 21 (2017) 1033 | DOI

[52] A Yuan, The sphere of semiadditive height 1, Int. Math. Res. Not. 2024 (2024) 675 | DOI

Cité par Sources :