Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a complex reductive group and a –module. There is a natural moment mapping and we denote (the shell) by . We use invariant theory and results of Mustaţă (Invent. Math. 145 (2001) 397–424) to find criteria for to have rational singularities and for the categorical quotient to have symplectic singularities, the latter results improving upon our earlier work (Herbig et. al., Compos. Math. 156 (2020) 613–646). It turns out that for “most” –modules , the shell has rational singularities. For the case of direct sums of classical representations of the classical groups, has rational singularities and has symplectic singularities if is a reduced and irreducible complete intersection. Another important special case is (the direct sum of copies of the Lie algebra of ) where . We show that has rational singularities and that has symplectic singularities, improving upon previous results of Aizenbud-Avni, Budur, Glazer–Hendel, and Kapon. Let , where is a closed Riemann surface of genus . Let be semisimple and let and be the corresponding representation variety and character variety. We show that is a complete intersection with rational singularities and that has symplectic singularities. If or contains no simple factor of rank , then the singularities of and are in codimension at least four and is locally factorial. If, in addition, is simply connected, then is locally factorial.
Herbig, Hans-Christian 1 ; Schwarz, Gerald W 2 ; Seaton, Christopher 3
@article{GT_2024_28_7_a10, author = {Herbig, Hans-Christian and Schwarz, Gerald W and Seaton, Christopher}, title = {When does the zero fiber of the moment map have rational singularities?}, journal = {Geometry & topology}, pages = {3475--3510}, publisher = {mathdoc}, volume = {28}, number = {7}, year = {2024}, doi = {10.2140/gt.2024.28.3475}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3475/} }
TY - JOUR AU - Herbig, Hans-Christian AU - Schwarz, Gerald W AU - Seaton, Christopher TI - When does the zero fiber of the moment map have rational singularities? JO - Geometry & topology PY - 2024 SP - 3475 EP - 3510 VL - 28 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3475/ DO - 10.2140/gt.2024.28.3475 ID - GT_2024_28_7_a10 ER -
%0 Journal Article %A Herbig, Hans-Christian %A Schwarz, Gerald W %A Seaton, Christopher %T When does the zero fiber of the moment map have rational singularities? %J Geometry & topology %D 2024 %P 3475-3510 %V 28 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3475/ %R 10.2140/gt.2024.28.3475 %F GT_2024_28_7_a10
Herbig, Hans-Christian; Schwarz, Gerald W; Seaton, Christopher. When does the zero fiber of the moment map have rational singularities?. Geometry & topology, Tome 28 (2024) no. 7, pp. 3475-3510. doi : 10.2140/gt.2024.28.3475. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3475/
[1] Representation growth and rational singularities of the moduli space of local systems, Invent. Math. 204 (2016) 245 | DOI
, ,[2] Counting points of schemes over finite rings and counting representations of arithmetic lattices, Duke Math. J. 167 (2018) 2721 | DOI
, ,[3] The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. A 308 (1983) 523 | DOI
, ,[4] Complete intersections and symmetric algebras, J. Algebra 73 (1981) 248 | DOI
,[5] Symplectic singularities, Invent. Math. 139 (2000) 541 | DOI
,[6] Orbits of linear algebraic groups, Ann. of Math. 93 (1971) 459 | DOI
,[7] Sur le produit de variétés localement factorielles ou Q–factorielles, preprint (2011)
, , ,[8] Linear algebraic groups, 126, Springer (1991) | DOI
,[9] Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987) 65 | DOI
,[10] Rational singularities, quiver moment maps, and representations of surface groups, Int. Math. Res. Not. 2021 (2021) 11782 | DOI
,[11] Symplectic reduction at zero angular momentum, J. Geom. Mech. 8 (2016) 13 | DOI
, , ,[12] Nilpotent subspaces of maximal dimension in semi-simple Lie algebras, Compos. Math. 142 (2006) 464 | DOI
, , ,[13] Luna’s slice theorem and applications, from: "Algebraic group actions and quotients" (editor J A Wiśniewski), Hindawi (2004) 39
,[14] Symplectic resolutions for nilpotent orbits, Invent. Math. 151 (2003) 167 | DOI
,[15] On nilalgebras and linear varieties of nilpotent matrices, I, Amer. J. Math. 80 (1958) 614 | DOI
,[16] On singularity properties of word maps and applications to probabilistic Waring type problems, 1497 (2024) | DOI
, ,[17] The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984) 200 | DOI
,[18] Representations of fundamental groups of surfaces, from: "Geometry and topology" (editors J Alexander, J Harer), Lecture Notes in Math. 1167, Springer (1985) 95 | DOI
,[19] Algebraic geometry, 52, Springer (1977) | DOI
,[20] The Koszul complex of a moment map, J. Symplectic Geom. 11 (2013) 497 | DOI
, ,[21] When is a symplectic quotient an orbifold?, Adv. Math. 280 (2015) 208 | DOI
, , ,[22] Symplectic quotients have symplectic singularities, Compos. Math. 156 (2020) 613 | DOI
, , ,[23] Isomorphisms of symplectic torus quotients, preprint (2023) | DOI
, , ,[24] Singularity properties of graph varieties, preprint (2019)
,[25] The Picard group of a G–variety, from: "Algebraische Transformationsgruppen und Invariantentheorie" (editors H Kraft, P Slodowy, T A Springer), DMV Sem. 13, Birkhäuser (1989) 77 | DOI
, , ,[26] A characterization of rational singularities, Duke Math. J. 102 (2000) 187 | DOI
,[27] Character varieties of free groups are Gorenstein but not always factorial, J. Algebra 456 (2016) 278 | DOI
, ,[28] Covering spaces of character varieties, New York J. Math. 21 (2015) 383
, ,[29] Varieties of characters, Algebr. Represent. Theory 20 (2017) 1133 | DOI
, ,[30] The space of surface group representations, Manuscripta Math. 78 (1993) 223 | DOI
,[31] Slices étales, from: "Sur les groupes algébriques", Supp. Bull. Soc. Math. France 101, Soc. Math. France (1973) 81 | DOI
,[32] Un théorème sur les orbites affines des groupes algébriques semi-simples, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27 (1973) 527
, ,[33] The generalization of Faulhaber’s formula to sums of non-integral powers, J. Math. Anal. Appl. 330 (2007) 571 | DOI
, ,[34] On linear subspaces of nilpotent elements in a Lie algebra, Linear Algebra Appl. 279 (1998) 195 | DOI
, ,[35] Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001) 397 | DOI
,[36] Extension of 2–forms and symplectic varieties, J. Reine Angew. Math. 539 (2001) 123 | DOI
,[37] The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties, Compos. Math. 94 (1994) 181
,[38] Criteria for the stability of the action of a semisimple group on the factorial of a manifold, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970) 523
,[39] Conjugacy classes of n–tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988) 1 | DOI
,[40] Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. 51 (1980) 37 | DOI
,[41] Lifting differential operators from orbit spaces, Ann. Sci. École Norm. Sup. 28 (1995) 253 | DOI
,[42] Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), 4, Soc. Math. France (2005)
,[43] Moduli of representations of the fundamental group of a smooth projective variety, II, Inst. Hautes Études Sci. Publ. Math. 80 (1994) 5 | DOI
,Cité par Sources :