When does the zero fiber of the moment map have rational singularities?
Geometry & topology, Tome 28 (2024) no. 7, pp. 3475-3510.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let G be a complex reductive group and V a G–module. There is a natural moment mapping μ: V V 𝔤 and we denote μ1(0) (the shell) by NV . We use invariant theory and results of Mustaţă (Invent. Math. 145 (2001) 397–424) to find criteria for NV to have rational singularities and for the categorical quotient NV G to have symplectic singularities, the latter results improving upon our earlier work (Herbig et. al., Compos. Math. 156 (2020) 613–646). It turns out that for “most” G–modules V , the shell NV has rational singularities. For the case of direct sums of classical representations of the classical groups, NV has rational singularities and NV G has symplectic singularities if NV is a reduced and irreducible complete intersection. Another important special case is V = p𝔤 (the direct sum of p copies of the Lie algebra of G) where p 2. We show that NV has rational singularities and that NV G has symplectic singularities, improving upon previous results of Aizenbud-Avni, Budur, Glazer–Hendel, and Kapon. Let π = π1(Σ), where Σ is a closed Riemann surface of genus p 2. Let G be semisimple and let Hom(π,G) and 𝒳(π,G) be the corresponding representation variety and character variety. We show that Hom(π,G) is a complete intersection with rational singularities and that 𝒳(π,G) has symplectic singularities. If p > 2 or G contains no simple factor of rank 1, then the singularities of Hom(π,G) and 𝒳(π,G) are in codimension at least four and Hom(π,G) is locally factorial. If, in addition, G is simply connected, then 𝒳(π,G) is locally factorial.

DOI : 10.2140/gt.2024.28.3475
Keywords: singular symplectic reduction, moment map, rational singularities, symplectic singularities, representation variety, character variety, representation growth of linear groups

Herbig, Hans-Christian 1 ; Schwarz, Gerald W 2 ; Seaton, Christopher 3

1 Departamento de Matemática Aplicada, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
2 Department of Mathematics, Brandeis University, Waltham, MA, United States
3 Department of Mathematics and Computer Science, Rhodes College, Memphis, TN, United States, Department of Mathematics and Statistics, Skidmore College, Saratoga Springs, NY, United States
@article{GT_2024_28_7_a10,
     author = {Herbig, Hans-Christian and Schwarz, Gerald W and Seaton, Christopher},
     title = {When does the zero fiber of the moment map have rational singularities?},
     journal = {Geometry & topology},
     pages = {3475--3510},
     publisher = {mathdoc},
     volume = {28},
     number = {7},
     year = {2024},
     doi = {10.2140/gt.2024.28.3475},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3475/}
}
TY  - JOUR
AU  - Herbig, Hans-Christian
AU  - Schwarz, Gerald W
AU  - Seaton, Christopher
TI  - When does the zero fiber of the moment map have rational singularities?
JO  - Geometry & topology
PY  - 2024
SP  - 3475
EP  - 3510
VL  - 28
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3475/
DO  - 10.2140/gt.2024.28.3475
ID  - GT_2024_28_7_a10
ER  - 
%0 Journal Article
%A Herbig, Hans-Christian
%A Schwarz, Gerald W
%A Seaton, Christopher
%T When does the zero fiber of the moment map have rational singularities?
%J Geometry & topology
%D 2024
%P 3475-3510
%V 28
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3475/
%R 10.2140/gt.2024.28.3475
%F GT_2024_28_7_a10
Herbig, Hans-Christian; Schwarz, Gerald W; Seaton, Christopher. When does the zero fiber of the moment map have rational singularities?. Geometry & topology, Tome 28 (2024) no. 7, pp. 3475-3510. doi : 10.2140/gt.2024.28.3475. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3475/

[1] A Aizenbud, N Avni, Representation growth and rational singularities of the moduli space of local systems, Invent. Math. 204 (2016) 245 | DOI

[2] A Aizenbud, N Avni, Counting points of schemes over finite rings and counting representations of arithmetic lattices, Duke Math. J. 167 (2018) 2721 | DOI

[3] M F Atiyah, R Bott, The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. A 308 (1983) 523 | DOI

[4] L L Avramov, Complete intersections and symmetric algebras, J. Algebra 73 (1981) 248 | DOI

[5] A Beauville, Symplectic singularities, Invent. Math. 139 (2000) 541 | DOI

[6] D Birkes, Orbits of linear algebraic groups, Ann. of Math. 93 (1971) 459 | DOI

[7] S Boissière, O Gabber, O Serman, Sur le produit de variétés localement factorielles ou Q–factorielles, preprint (2011)

[8] A Borel, Linear algebraic groups, 126, Springer (1991) | DOI

[9] J F Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987) 65 | DOI

[10] N Budur, Rational singularities, quiver moment maps, and representations of surface groups, Int. Math. Res. Not. 2021 (2021) 11782 | DOI

[11] J Cape, H C Herbig, C Seaton, Symplectic reduction at zero angular momentum, J. Geom. Mech. 8 (2016) 13 | DOI

[12] J Draisma, H Kraft, J Kuttler, Nilpotent subspaces of maximal dimension in semi-simple Lie algebras, Compos. Math. 142 (2006) 464 | DOI

[13] J M Drézet, Luna’s slice theorem and applications, from: "Algebraic group actions and quotients" (editor J A Wiśniewski), Hindawi (2004) 39

[14] B Fu, Symplectic resolutions for nilpotent orbits, Invent. Math. 151 (2003) 167 | DOI

[15] M Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices, I, Amer. J. Math. 80 (1958) 614 | DOI

[16] I Glazer, Y I Hendel, On singularity properties of word maps and applications to probabilistic Waring type problems, 1497 (2024) | DOI

[17] W M Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984) 200 | DOI

[18] W M Goldman, Representations of fundamental groups of surfaces, from: "Geometry and topology" (editors J Alexander, J Harer), Lecture Notes in Math. 1167, Springer (1985) 95 | DOI

[19] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[20] H C Herbig, G W Schwarz, The Koszul complex of a moment map, J. Symplectic Geom. 11 (2013) 497 | DOI

[21] H C Herbig, G W Schwarz, C Seaton, When is a symplectic quotient an orbifold?, Adv. Math. 280 (2015) 208 | DOI

[22] H C Herbig, G W Schwarz, C Seaton, Symplectic quotients have symplectic singularities, Compos. Math. 156 (2020) 613 | DOI

[23] H C Herbig, G W Schwarz, C Seaton, Isomorphisms of symplectic torus quotients, preprint (2023) | DOI

[24] G Kapon, Singularity properties of graph varieties, preprint (2019)

[25] F Knop, H Kraft, T Vust, The Picard group of a G–variety, from: "Algebraische Transformationsgruppen und Invariantentheorie" (editors H Kraft, P Slodowy, T A Springer), DMV Sem. 13, Birkhäuser (1989) 77 | DOI

[26] S J Kovács, A characterization of rational singularities, Duke Math. J. 102 (2000) 187 | DOI

[27] S Lawton, C Manon, Character varieties of free groups are Gorenstein but not always factorial, J. Algebra 456 (2016) 278 | DOI

[28] S Lawton, D Ramras, Covering spaces of character varieties, New York J. Math. 21 (2015) 383

[29] S Lawton, A S Sikora, Varieties of characters, Algebr. Represent. Theory 20 (2017) 1133 | DOI

[30] J Li, The space of surface group representations, Manuscripta Math. 78 (1993) 223 | DOI

[31] D Luna, Slices étales, from: "Sur les groupes algébriques", Supp. Bull. Soc. Math. France 101, Soc. Math. France (1973) 81 | DOI

[32] D Luna, T Vust, Un théorème sur les orbites affines des groupes algébriques semi-simples, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27 (1973) 527

[33] K J Mcgown, H R Parks, The generalization of Faulhaber’s formula to sums of non-integral powers, J. Math. Anal. Appl. 330 (2007) 571 | DOI

[34] R Meshulam, N Radwan, On linear subspaces of nilpotent elements in a Lie algebra, Linear Algebra Appl. 279 (1998) 195 | DOI

[35] M Mustaţă, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001) 397 | DOI

[36] Y Namikawa, Extension of 2–forms and symplectic varieties, J. Reine Angew. Math. 539 (2001) 123 | DOI

[37] D I Panyushev, The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties, Compos. Math. 94 (1994) 181

[38] V L Popov, Criteria for the stability of the action of a semisimple group on the factorial of a manifold, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970) 523

[39] R W Richardson, Conjugacy classes of n–tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988) 1 | DOI

[40] G W Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. 51 (1980) 37 | DOI

[41] G W Schwarz, Lifting differential operators from orbit spaces, Ann. Sci. École Norm. Sup. 28 (1995) 253 | DOI

[42] A Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), 4, Soc. Math. France (2005)

[43] C T Simpson, Moduli of representations of the fundamental group of a smooth projective variety, II, Inst. Hautes Études Sci. Publ. Math. 80 (1994) 5 | DOI

Cité par Sources :