We show that there exist infinitely many closed 3–manifolds that do not embed in closed symplectic 4–manifolds, disproving a conjecture of Etnyre–Min–Mukherjee. To do this, we construct L–spaces that cannot bound positive- or negative-definite manifolds. The arguments use Heegaard Floer correction terms and instanton moduli spaces.
Daemi, Aliakbar 1 ; Lidman, Tye 2 ; Miller Eismeier, Mike 3
@article{10_2140_gt_2024_28_3357,
author = {Daemi, Aliakbar and Lidman, Tye and Miller Eismeier, Mike},
title = {3{\textendash}Manifolds without any embedding in symplectic 4{\textendash}manifolds},
journal = {Geometry & topology},
pages = {3357--3372},
year = {2024},
volume = {28},
number = {7},
doi = {10.2140/gt.2024.28.3357},
url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3357/}
}
TY - JOUR AU - Daemi, Aliakbar AU - Lidman, Tye AU - Miller Eismeier, Mike TI - 3–Manifolds without any embedding in symplectic 4–manifolds JO - Geometry & topology PY - 2024 SP - 3357 EP - 3372 VL - 28 IS - 7 UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3357/ DO - 10.2140/gt.2024.28.3357 ID - 10_2140_gt_2024_28_3357 ER -
%0 Journal Article %A Daemi, Aliakbar %A Lidman, Tye %A Miller Eismeier, Mike %T 3–Manifolds without any embedding in symplectic 4–manifolds %J Geometry & topology %D 2024 %P 3357-3372 %V 28 %N 7 %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3357/ %R 10.2140/gt.2024.28.3357 %F 10_2140_gt_2024_28_3357
Daemi, Aliakbar; Lidman, Tye; Miller Eismeier, Mike. 3–Manifolds without any embedding in symplectic 4–manifolds. Geometry & topology, Tome 28 (2024) no. 7, pp. 3357-3372. doi: 10.2140/gt.2024.28.3357
[1] , Equivariant Floer groups for binary polyhedral spaces, Math. Ann. 302 (1995) 295 | DOI
[2] , , , Surgery, polygons and SU(N)–Floer homology, J. Topol. 13 (2020) 576 | DOI
[3] , Chern–Simons functional and the homology cobordism group, Duke Math. J. 169 (2020) 2827 | DOI
[4] , , Instantons and rational homology spheres, preprint (2022)
[5] , Finite knot surgeries and Heegaard Floer homology, Algebr. Geom. Topol. 15 (2015) 667 | DOI
[6] , An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279
[7] , The orientation of Yang–Mills moduli spaces and 4–manifold topology, J. Differential Geom. 26 (1987) 397
[8] , Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI
[9] , , , On 3–manifolds that are boundaries of exotic 4–manifolds, Trans. Amer. Math. Soc. 375 (2022) 4307 | DOI
[10] , , Pseudofree orbifolds, Ann. of Math. 122 (1985) 335 | DOI
[11] , , Instanton homology of Seifert fibred homology three spheres, Proc. Lond. Math. Soc. 61 (1990) 109 | DOI
[12] , Equivariant aspects of Yang–Mills Floer theory, Topology 41 (2002) 525 | DOI
[13] , Homology cobordism group of homology 3–spheres, Invent. Math. 100 (1990) 339 | DOI
[14] , , 3–Manifolds that bound no definite 4–manifold, Math. Res. Lett. 30 (2023) 1063 | DOI
[15] , , Instantons, concordance, and Whitehead doubling, J. Differential Geom. 91 (2012) 281
[16] , Equivariant instanton Floer homology and calculations for the binary polyhedral spaces, preprint (2022)
[17] , Four-manifold invariants from higher-rank bundles, J. Differential Geom. 70 (2005) 59
[18] , , Knot homology groups from instantons, J. Topol. 4 (2011) 835 | DOI
[19] , Equivariant instanton homology, preprint (2019)
[20] , A note on embeddings of 3–manifolds in symplectic 4–manifolds, preprint (2020)
[21] , , , Filtered instanton Floer homology and the homology cobordism group, J. Eur. Math. Soc. 26 (2024) 4699 | DOI
[22] , , A characterization of the Zn ⊕ Z(δ) lattice and definite nonunimodular intersection forms, Amer. J. Math. 134 (2012) 891 | DOI
[23] , , Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179 | DOI
[24] , , On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI
[25] , Independence of satellites of torus knots in the smooth concordance group, Geom. Topol. 21 (2017) 3191 | DOI
Cité par Sources :