3–Manifolds without any embedding in symplectic 4–manifolds
Geometry & topology, Tome 28 (2024) no. 7, pp. 3357-3372 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

We show that there exist infinitely many closed 3–manifolds that do not embed in closed symplectic 4–manifolds, disproving a conjecture of Etnyre–Min–Mukherjee. To do this, we construct L–spaces that cannot bound positive- or negative-definite manifolds. The arguments use Heegaard Floer correction terms and instanton moduli spaces.

DOI : 10.2140/gt.2024.28.3357
Keywords: $3$–manifold, definite $4$–manifold, symplectic $4$–manifolds, L–spaces, Chern–Simons invariant, instantons

Daemi, Aliakbar 1 ; Lidman, Tye 2 ; Miller Eismeier, Mike 3

1 Department of Mathematics and Statistics, Washington University, St. Louis, MO, United States
2 Department of Mathematics, North Carolina State University, Raleigh, NC, United States
3 Department of Mathematics, Columbia University, New York, NY, United States, Department of Mathematics, University of Vermont, Burlington, VT, United States
@article{10_2140_gt_2024_28_3357,
     author = {Daemi, Aliakbar and Lidman, Tye and Miller Eismeier, Mike},
     title = {3{\textendash}Manifolds without any embedding in symplectic 4{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {3357--3372},
     year = {2024},
     volume = {28},
     number = {7},
     doi = {10.2140/gt.2024.28.3357},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3357/}
}
TY  - JOUR
AU  - Daemi, Aliakbar
AU  - Lidman, Tye
AU  - Miller Eismeier, Mike
TI  - 3–Manifolds without any embedding in symplectic 4–manifolds
JO  - Geometry & topology
PY  - 2024
SP  - 3357
EP  - 3372
VL  - 28
IS  - 7
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3357/
DO  - 10.2140/gt.2024.28.3357
ID  - 10_2140_gt_2024_28_3357
ER  - 
%0 Journal Article
%A Daemi, Aliakbar
%A Lidman, Tye
%A Miller Eismeier, Mike
%T 3–Manifolds without any embedding in symplectic 4–manifolds
%J Geometry & topology
%D 2024
%P 3357-3372
%V 28
%N 7
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3357/
%R 10.2140/gt.2024.28.3357
%F 10_2140_gt_2024_28_3357
Daemi, Aliakbar; Lidman, Tye; Miller Eismeier, Mike. 3–Manifolds without any embedding in symplectic 4–manifolds. Geometry & topology, Tome 28 (2024) no. 7, pp. 3357-3372. doi: 10.2140/gt.2024.28.3357

[1] D M Austin, Equivariant Floer groups for binary polyhedral spaces, Math. Ann. 302 (1995) 295 | DOI

[2] L Culler, A Daemi, Y Xie, Surgery, polygons and SU(N)–Floer homology, J. Topol. 13 (2020) 576 | DOI

[3] A Daemi, Chern–Simons functional and the homology cobordism group, Duke Math. J. 169 (2020) 2827 | DOI

[4] A Daemi, M Miller Eismeier, Instantons and rational homology spheres, preprint (2022)

[5] M I Doig, Finite knot surgeries and Heegaard Floer homology, Algebr. Geom. Topol. 15 (2015) 667 | DOI

[6] S K Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279

[7] S K Donaldson, The orientation of Yang–Mills moduli spaces and 4–manifold topology, J. Differential Geom. 26 (1987) 397

[8] S K Donaldson, Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI

[9] J B Etnyre, H Min, A Mukherjee, On 3–manifolds that are boundaries of exotic 4–manifolds, Trans. Amer. Math. Soc. 375 (2022) 4307 | DOI

[10] R Fintushel, R J Stern, Pseudofree orbifolds, Ann. of Math. 122 (1985) 335 | DOI

[11] R Fintushel, R J Stern, Instanton homology of Seifert fibred homology three spheres, Proc. Lond. Math. Soc. 61 (1990) 109 | DOI

[12] K A Frøyshov, Equivariant aspects of Yang–Mills Floer theory, Topology 41 (2002) 525 | DOI

[13] M Furuta, Homology cobordism group of homology 3–spheres, Invent. Math. 100 (1990) 339 | DOI

[14] M Golla, K Larson, 3–Manifolds that bound no definite 4–manifold, Math. Res. Lett. 30 (2023) 1063 | DOI

[15] M Hedden, P Kirk, Instantons, concordance, and Whitehead doubling, J. Differential Geom. 91 (2012) 281

[16] G O Helle, Equivariant instanton Floer homology and calculations for the binary polyhedral spaces, preprint (2022)

[17] P B Kronheimer, Four-manifold invariants from higher-rank bundles, J. Differential Geom. 70 (2005) 59

[18] P B Kronheimer, T S Mrowka, Knot homology groups from instantons, J. Topol. 4 (2011) 835 | DOI

[19] M Miller Eismeier, Equivariant instanton homology, preprint (2019)

[20] A Mukherjee, A note on embeddings of 3–manifolds in symplectic 4–manifolds, preprint (2020)

[21] Y Nozaki, K Sato, M Taniguchi, Filtered instanton Floer homology and the homology cobordism group, J. Eur. Math. Soc. 26 (2024) 4699 | DOI

[22] B Owens, S Strle, A characterization of the Zn ⊕ Z(δ) lattice and definite nonunimodular intersection forms, Amer. J. Math. 134 (2012) 891 | DOI

[23] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179 | DOI

[24] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI

[25] J Pinzón-Caicedo, Independence of satellites of torus knots in the smooth concordance group, Geom. Topol. 21 (2017) 3191 | DOI

Cité par Sources :