Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Orbifold and logarithmic structures provide independent routes to the virtual enumeration of curves with tangency orders for a simple normal crossings pair . The theories do not coincide and their relationship has remained mysterious. We prove that the genus-zero orbifold theories of multiroot stacks of strata blowups of converge to the corresponding logarithmic theory of . With fixed numerical data, there is an explicit combinatorial criterion that guarantees when a blowup is sufficiently refined for the theories to coincide. The result identifies birational invariance as the crucial property distinguishing the logarithmic and orbifold theories. There are two key ideas in the proof. The first is the construction of a naive Gromov–Witten theory, which serves as an intermediary between roots and logarithms. The second is a smoothing theorem for tropical stable maps; the geometric theorem then follows via virtual intersection theory relative to the universal target. The results import a new set of computational tools into logarithmic Gromov–Witten theory. As an application, we show that the genus-zero logarithmic Gromov–Witten theory of a pair is determined by the absolute Gromov–Witten theories of its strata.
Battistella, Luca 1 ; Nabijou, Navid 2 ; Ranganathan, Dhruv 3
@article{GT_2024_28_7_a7, author = {Battistella, Luca and Nabijou, Navid and Ranganathan, Dhruv}, title = {Gromov{\textendash}Witten theory via roots and logarithms}, journal = {Geometry & topology}, pages = {3309--3355}, publisher = {mathdoc}, volume = {28}, number = {7}, year = {2024}, doi = {10.2140/gt.2024.28.3309}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3309/} }
TY - JOUR AU - Battistella, Luca AU - Nabijou, Navid AU - Ranganathan, Dhruv TI - Gromov–Witten theory via roots and logarithms JO - Geometry & topology PY - 2024 SP - 3309 EP - 3355 VL - 28 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3309/ DO - 10.2140/gt.2024.28.3309 ID - GT_2024_28_7_a7 ER -
%0 Journal Article %A Battistella, Luca %A Nabijou, Navid %A Ranganathan, Dhruv %T Gromov–Witten theory via roots and logarithms %J Geometry & topology %D 2024 %P 3309-3355 %V 28 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3309/ %R 10.2140/gt.2024.28.3309 %F GT_2024_28_7_a7
Battistella, Luca; Nabijou, Navid; Ranganathan, Dhruv. Gromov–Witten theory via roots and logarithms. Geometry & topology, Tome 28 (2024) no. 7, pp. 3309-3355. doi : 10.2140/gt.2024.28.3309. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3309/
[1] Lectures on Gromov–Witten invariants of orbifolds, from: "Enumerative invariants in algebraic geometry and string theory" (editors K Behrend, M Manetti), Lecture Notes in Math. 1947, Springer (2008) 1 | DOI
,[2] Stable logarithmic maps to Deligne–Faltings pairs, II, Asian J. Math. 18 (2014) 465 | DOI
, ,[3] Weak semistable reduction in characteristic 0, Invent. Math. 139 (2000) 241 | DOI
, ,[4] Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002) 27 | DOI
, ,[5] Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337 | DOI
, , ,[6] Twisted stable maps to tame Artin stacks, J. Algebraic Geom. 20 (2011) 399 | DOI
, , ,[7] Comparison theorems for Gromov–Witten invariants of smooth pairs and of degenerations, Ann. Inst. Fourier (Grenoble) 64 (2014) 1611 | DOI
, , ,[8] Skeletons and fans of logarithmic structures, from: "Nonarchimedean and tropical geometry" (editors M Baker, S Payne), Springer (2016) 287 | DOI
, , , , ,[9] Relative and orbifold Gromov–Witten invariants, Algebr. Geom. 4 (2017) 472 | DOI
, , ,[10] Punctured logarithmic maps, preprint (2020)
, , , ,[11] Gromov–Witten theory of root gerbes, I : Structure of genus 0 moduli spaces, J. Differential Geom. 99 (2015) 1
, , ,[12] Gromov–Witten theory of product stacks, Comm. Anal. Geom. 24 (2016) 223 | DOI
, , ,[13] The higher-dimensional tropical vertex, Geom. Topol. 26 (2022) 2135 | DOI
, ,[14] Chow rings of stacks of prestable curves, I, Forum Math. Sigma 10 (2022) | DOI
, ,[15] Relative quasimaps and mirror formulae, Int. Math. Res. Not. 2021 (2021) 7885 | DOI
, ,[16] The local-orbifold correspondence for simple normal crossing pairs, J. Inst. Math. Jussieu 22 (2023) 2515 | DOI
, , , ,[17] The product formula for Gromov–Witten invariants, J. Algebraic Geom. 8 (1999) 529
,[18] Intersection theory of toric b–divisors in toric varieties, J. Algebraic Geom. 28 (2019) 291 | DOI
,[19] Gromov–Witten invariants of toric fibrations, Int. Math. Res. Not. 2014 (2014) 5437 | DOI
,[20] Using stacks to impose tangency conditions on curves, Amer. J. Math. 129 (2007) 405 | DOI
,[21] Enumeration of rational plane curves tangent to a smooth cubic, Adv. Math. 219 (2008) 316 | DOI
, ,[22] Tropical expansions and toric variety bundles, preprint (2022)
, ,[23] Rubber tori in the boundary of expanded stable maps, J. Lond. Math. Soc. 109 (2024) | DOI
, ,[24] A moduli stack of tropical curves, Forum Math. Sigma 8 (2020) | DOI
, , , ,[25] Stable logarithmic maps to Deligne–Faltings pairs, I, Ann. of Math. 180 (2014) 455 | DOI
,[26] Orbifold Gromov–Witten theory of weighted blowups, Sci. China Math. 63 (2020) 2475 | DOI
, , ,[27] Orbifold quasimap theory, Math. Ann. 363 (2015) 777 | DOI
, , ,[28] The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces, Math. Res. Lett. 19 (2012) 997 | DOI
, , , , , ,[29] Higher genus Gromov–Witten invariants as genus zero invariants of symmetric products, Ann. of Math. 164 (2006) 561 | DOI
,[30] Toric varieties, 124, Amer. Math. Soc. (2011) | DOI
, , ,[31] Chern classes and Gromov–Witten theory of projective bundles, Amer. J. Math. 143 (2021) 811 | DOI
,[32] Structures in genus-zero relative Gromov–Witten theory, J. Topol. 13 (2020) 269 | DOI
, , ,[33] Higher genus relative Gromov–Witten theory and double ramification cycles, J. Lond. Math. Soc. 103 (2021) 1547 | DOI
, , ,[34] Absolute and relative Gromov–Witten invariants of very ample hypersurfaces, Duke Math. J. 115 (2002) 171 | DOI
,[35] Gromov–Witten invariants of hypersurfaces, Habilitationsschrift, Universität Kaiserslautern (2003)
,[36] Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451 | DOI
, ,[37] Intrinsic mirror symmetry, preprint (2019)
, ,[38] The tropical vertex, Duke Math. J. 153 (2010) 297 | DOI
, , ,[39] Costello’s pushforward formula : errata and generalization, Manuscripta Math. 171 (2023) 621 | DOI
, ,[40] Logarithmic intersections of double ramification cycles, Algebr. Geom. 9 (2022) 574 | DOI
, ,[41] Multiplicativity of the double ramification cycle, Doc. Math. 24 (2019) 545 | DOI
, , ,[42] Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017) 221 | DOI
, , , ,[43] Double ramification cycles with target varieties, J. Topol. 13 (2020) 1725 | DOI
, , , ,[44] Toric singularities, Amer. J. Math. 116 (1994) 1073 | DOI
,[45] Log smooth deformation and moduli of log smooth curves, Int. J. Math. 11 (2000) 215 | DOI
,[46] Toroidal embeddings, I, 339, Springer (1973) | DOI
, , , ,[47] Divisors and curves on logarithmic mapping spaces, preprint (2022)
, , , ,[48] Logarithmic stable maps, from: "New developments in algebraic geometry, integrable systems and mirror symmetry" (editors M H Saito, S Hosono, K Yoshioka), Adv. Stud. Pure Math. 59, Math. Soc. Japan (2010) 167 | DOI
,[49] Cycle groups for Artin stacks, Invent. Math. 138 (1999) 495 | DOI
,[50] Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001) 509
,[51] A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002) 199
,[52] Localization in Gromov–Witten theory and orbifold Gromov–Witten theory, from: "Handbook of moduli, II" (editors G Farkas, I Morrison), Adv. Lect. Math. 25, International (2013) 353
,[53] Introduction to tropical geometry, 161, Amer. Math. Soc. (2015) | DOI
, ,[54] Descendant log Gromov–Witten invariants for toric varieties and tropical curves, Trans. Amer. Math. Soc. 373 (2020) 1109 | DOI
, ,[55] Virtual pull-backs, J. Algebraic Geom. 21 (2012) 201 | DOI
,[56] Universal stacky semistable reduction, Israel J. Math. 242 (2021) 55 | DOI
,[57] A case study of intersections on blowups of the moduli of curves, Algebra Number Theory 18 (2024) 1767 | DOI
, ,[58] Recursion formulae in logarithmic Gromov–Witten theory and quasimap theory, PhD thesis, Imperial College London (2018)
,[59] Gromov–Witten theory with maximal contacts, Forum Math. Sigma 10 (2022) | DOI
, ,[60] Toric degenerations of toric varieties and tropical curves, Duke Math. J. 135 (2006) 1 | DOI
, ,[61] (Log) twisted curves, Compos. Math. 143 (2007) 476 | DOI
,[62] Skeletons of stable maps, I : Rational curves in toric varieties, J. Lond. Math. Soc. 95 (2017) 804 | DOI
,[63] A note on the cycle of curves in a product of pairs, preprint (2019)
,[64] Logarithmic Gromov–Witten theory with expansions, Algebr. Geom. 9 (2022) 714
,[65] Moduli of stable maps in genus one and logarithmic geometry, I, Geom. Topol. 23 (2019) 3315 | DOI
, , ,[66] Logarithmic quasimaps, Adv. Math. 438 (2024) 109469 | DOI
,[67] On orbifold Gromov–Witten theory in codimension one, J. Pure Appl. Algebra 220 (2016) 3567 | DOI
, ,[68] Higher genus relative and orbifold Gromov–Witten invariants, Geom. Topol. 24 (2020) 2749 | DOI
, ,[69] A Gromov–Witten theory for simple normal-crossing pairs without log geometry, Comm. Math. Phys. 401 (2023) 803 | DOI
, ,[70] A mirror theorem for multi-root stacks and applications, Selecta Math. 29 (2023) 6 | DOI
, ,[71] Uniqueness of minimal morphisms of logarithmic schemes, Algebr. Geom. 6 (2019) 50 | DOI
,[72] Splitting of Gromov–Witten invariants with toric gluing strata, J. Algebraic Geom. 33 (2024) 213 | DOI
,[73] Relative quantum cohomology under birational transformations, preprint (2022)
,Cité par Sources :