CAT(0) 4–manifolds are Euclidean
Geometry & topology, Tome 28 (2024) no. 7, pp. 3285-3308.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that a topological 4–manifold of globally nonpositive curvature is homeomorphic to Euclidean space.

DOI : 10.2140/gt.2024.28.3285
Keywords: $\mathbb{R}^4$, Cartan–Hadamard, strainer map

Lytchak, Alexander 1 ; Nagano, Koichi 2 ; Stadler, Stephan 3

1 Institut für Algebra und Geometrie, Karlsruher Institut für Technologie, Karlsruhe, Germany
2 Department of Mathematics, University of Tsukuba, Tsukuba, Japan
3 Max Planck Institute for Mathematics, Bonn, Germany
@article{GT_2024_28_7_a6,
     author = {Lytchak, Alexander and Nagano, Koichi and Stadler, Stephan},
     title = {CAT(0) 4{\textendash}manifolds are {Euclidean}},
     journal = {Geometry & topology},
     pages = {3285--3308},
     publisher = {mathdoc},
     volume = {28},
     number = {7},
     year = {2024},
     doi = {10.2140/gt.2024.28.3285},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3285/}
}
TY  - JOUR
AU  - Lytchak, Alexander
AU  - Nagano, Koichi
AU  - Stadler, Stephan
TI  - CAT(0) 4–manifolds are Euclidean
JO  - Geometry & topology
PY  - 2024
SP  - 3285
EP  - 3308
VL  - 28
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3285/
DO  - 10.2140/gt.2024.28.3285
ID  - GT_2024_28_7_a6
ER  - 
%0 Journal Article
%A Lytchak, Alexander
%A Nagano, Koichi
%A Stadler, Stephan
%T CAT(0) 4–manifolds are Euclidean
%J Geometry & topology
%D 2024
%P 3285-3308
%V 28
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3285/
%R 10.2140/gt.2024.28.3285
%F GT_2024_28_7_a6
Lytchak, Alexander; Nagano, Koichi; Stadler, Stephan. CAT(0) 4–manifolds are Euclidean. Geometry & topology, Tome 28 (2024) no. 7, pp. 3285-3308. doi : 10.2140/gt.2024.28.3285. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3285/

[1] K Adiprasito, B Benedetti, Collapsibility of CAT(0) spaces, Geom. Dedicata 206 (2020) 181 | DOI

[2] K A Adiprasito, L Funar, CAT(0) metrics on contractible manifolds, preprint (2015)

[3] S B Alexander, R L Bishop, The Hadamard–Cartan theorem in locally convex metric spaces, Enseign. Math. 36 (1990) 309

[4] S Alexander, V Kapovitch, A Petrunin, Alexandrov geometry: foundations, 236, Amer. Math. Soc. (2024)

[5] F D Ancel, C R Guilbault, Interiors of compact contractible n–manifolds are hyperbolic (n ≥ 5), J. Differential Geom. 45 (1997) 1

[6] F D Ancel, M W Davis, C R Guilbault, CAT(0) reflection manifolds, from: "Geometric topology, I" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 441 | DOI

[7] V N Berestovsky, Borsuk’s problem on metrization of a polyhedron, Dokl. Akad. Nauk SSSR 268 (1983) 273

[8] V N Berestovsky, D M Halverson, D Repovš, Locally G–homogeneous Busemann G–spaces, Differential Geom. Appl. 29 (2011) 299 | DOI

[9] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[10] M Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960) 478 | DOI

[11] M Brown, The monotone union of open n–cells is an open n–cell, Proc. Amer. Math. Soc. 12 (1961) 812 | DOI

[12] Y Burago, M Gromov, G Perelman, A D Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992) 3

[13] D Burago, Y Burago, S Ivanov, A course in metric geometry, 33, Amer. Math. Soc. (2001) | DOI

[14] H Busemann, The geometry of geodesics, Academic (1955)

[15] J W Cannon, The recognition problem: what is a topological manifold?, Bull. Amer. Math. Soc. 84 (1978) 832 | DOI

[16] A Cavicchioli, F Hegenbarth, D Repovš, Higher-dimensional generalized manifolds: surgery and constructions, Eur. Math. Soc. (2016) | DOI

[17] R J Daverman, J J Walsh, A ghastly generalized n–manifold, Illinois J. Math. 25 (1981) 555 | DOI

[18] M W Davis, T Januszkiewicz, Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347

[19] M Davis, T Januszkiewicz, J F Lafont, 4–Dimensional locally CAT(0)–manifolds with no Riemannian smoothings, Duke Math. J. 161 (2012) 1 | DOI

[20] J Eells Jr., N H Kuiper, Homotopy negligible subsets, Compos. Math. 21 (1969) 155

[21] S Ferry, Strongly regular mappings with compact ANR fibers are Hurewicz fiberings, Pacific J. Math. 75 (1978) 373 | DOI

[22] S C Ferry, Alexander duality and Hurewicz fibrations, Trans. Amer. Math. Soc. 327 (1991) 201 | DOI

[23] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357

[24] K Fujiwara, T Shioya, S Yamagata, Parabolic isometries of CAT(0) spaces and CAT(0) dimensions, Algebr. Geom. Topol. 4 (2004) 861 | DOI

[25] M Gromov, Hyperbolic manifolds, groups and actions, from: "Riemann surfaces and related topics" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 183 | DOI

[26] D M Halverson, D Repovš, The Bing–Borsuk and the Busemann conjectures, Math. Commun. 13 (2008) 163

[27] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[28] S T Hu, Theory of retracts, Wayne State Univ. Press (1965) 234

[29] L S Husch, T M Price, Finding a boundary for a 3–manifold, Ann. of Math. 91 (1970) 223 | DOI

[30] S Ivanov, A Lytchak, Rigidity of Busemann convex Finsler metrics, Comment. Math. Helv. 94 (2019) 855 | DOI

[31] M Kapovich, B Leeb, Quasi-isometries preserve the geometric decomposition of Haken manifolds, Invent. Math. 128 (1997) 393 | DOI

[32] B Krakus, Any 3–dimensional G–space is a manifold, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968) 737

[33] L Kramer, On the local structure and the homology of CAT(κ) spaces and Euclidean buildings, Adv. Geom. 11 (2011) 347 | DOI

[34] A Lytchak, Rigidity of spherical buildings and joins, Geom. Funct. Anal. 15 (2005) 720 | DOI

[35] A Lytchak, K Nagano, Geodesically complete spaces with an upper curvature bound, Geom. Funct. Anal. 29 (2019) 295 | DOI

[36] A Lytchak, K Nagano, Topological regularity of spaces with an upper curvature bound, J. Eur. Math. Soc. 24 (2022) 137 | DOI

[37] A Lytchak, V Schroeder, Affine functions on CAT(κ)–spaces, Math. Z. 255 (2007) 231 | DOI

[38] A Lytchak, S Stadler, Improvements of upper curvature bounds, Trans. Amer. Math. Soc. 373 (2020) 7153 | DOI

[39] D R Mcmillan Jr., Strong homotopy equivalence of 3–manifolds, Bull. Amer. Math. Soc. 73 (1967) 718 | DOI

[40] W J R Mitchell, Defining the boundary of a homology manifold, Proc. Amer. Math. Soc. 110 (1990) 509 | DOI

[41] W J R Mitchell, D Repovš, The topology of cell-like mappings, Rend. Sem. Fac. Sci. Univ. Cagliari 58 (1988) 265

[42] K Nagano, Asymptotic topological regularity of CAT(0) spaces, Ann. Global Anal. Geom. 61 (2022) 427 | DOI

[43] P Petersen V, A finiteness theorem for metric spaces, J. Differential Geom. 31 (1990) 387

[44] P Petersen V, Gromov–Hausdorff convergence of metric spaces, from: "Differential geometry : Riemannian geometry" (editors R Greene, S T Yau), Proc. Sympos. Pure Math. 54, Amer. Math. Soc. (1993) 489 | DOI

[45] F Raymond, Local triviality for Hurewicz fiberings of manifolds, Topology 3 (1965) 43 | DOI

[46] D Repovš, The recognition problem for topological manifolds: a survey, Kodai Math. J. 17 (1994) 538 | DOI

[47] D Rolfsen, Strongly convex metrics in cells, Bull. Amer. Math. Soc. 74 (1968) 171 | DOI

[48] B Sathaye, Link obstruction to Riemannian smoothings of locally CAT(0) 4–manifolds, preprint (2017)

[49] S Stadler, An obstruction to the smoothability of singular nonpositively curved metrics on 4–manifolds by patterns of incompressible tori, Geom. Funct. Anal. 25 (2015) 1575 | DOI

[50] J Stallings, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58 (1962) 481 | DOI

[51] D A Stone, Geodesics in piecewise linear manifolds, Trans. Amer. Math. Soc. 215 (1976) 1 | DOI

[52] P Thurston, 4–Dimensional Busemann G–spaces are 4–manifolds, Differential Geom. Appl. 6 (1996) 245 | DOI

[53] P Thurston, CAT(0) 4–manifolds possessing a single tame point are Euclidean, J. Geom. Anal. 6 (1996) 475 | DOI

[54] H Toruńczyk, Concerning locally homotopy negligible sets and characterization of l2–manifolds, Fund. Math. 101 (1978) 93 | DOI

[55] G S Ungar, Conditions for a mapping to have the slicing structure property, Pacific J. Math. 30 (1969) 549 | DOI

[56] R L Wilder, Topology of manifolds, 32, Amer. Math. Soc. (1949)

[57] J Y Wu, Topological regularity theorems for Alexandrov spaces, J. Math. Soc. Japan 49 (1997) 741 | DOI

Cité par Sources :