Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that a topological –manifold of globally nonpositive curvature is homeomorphic to Euclidean space.
Lytchak, Alexander 1 ; Nagano, Koichi 2 ; Stadler, Stephan 3
@article{GT_2024_28_7_a6, author = {Lytchak, Alexander and Nagano, Koichi and Stadler, Stephan}, title = {CAT(0) 4{\textendash}manifolds are {Euclidean}}, journal = {Geometry & topology}, pages = {3285--3308}, publisher = {mathdoc}, volume = {28}, number = {7}, year = {2024}, doi = {10.2140/gt.2024.28.3285}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3285/} }
TY - JOUR AU - Lytchak, Alexander AU - Nagano, Koichi AU - Stadler, Stephan TI - CAT(0) 4–manifolds are Euclidean JO - Geometry & topology PY - 2024 SP - 3285 EP - 3308 VL - 28 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3285/ DO - 10.2140/gt.2024.28.3285 ID - GT_2024_28_7_a6 ER -
Lytchak, Alexander; Nagano, Koichi; Stadler, Stephan. CAT(0) 4–manifolds are Euclidean. Geometry & topology, Tome 28 (2024) no. 7, pp. 3285-3308. doi : 10.2140/gt.2024.28.3285. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3285/
[1] Collapsibility of CAT(0) spaces, Geom. Dedicata 206 (2020) 181 | DOI
, ,[2] CAT(0) metrics on contractible manifolds, preprint (2015)
, ,[3] The Hadamard–Cartan theorem in locally convex metric spaces, Enseign. Math. 36 (1990) 309
, ,[4] Alexandrov geometry: foundations, 236, Amer. Math. Soc. (2024)
, , ,[5] Interiors of compact contractible n–manifolds are hyperbolic (n ≥ 5), J. Differential Geom. 45 (1997) 1
, ,[6] CAT(0) reflection manifolds, from: "Geometric topology, I" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 441 | DOI
, , ,[7] Borsuk’s problem on metrization of a polyhedron, Dokl. Akad. Nauk SSSR 268 (1983) 273
,[8] Locally G–homogeneous Busemann G–spaces, Differential Geom. Appl. 29 (2011) 299 | DOI
, , ,[9] Metric spaces of non-positive curvature, 319, Springer (1999) | DOI
, ,[10] Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960) 478 | DOI
,[11] The monotone union of open n–cells is an open n–cell, Proc. Amer. Math. Soc. 12 (1961) 812 | DOI
,[12] A D Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992) 3
, , ,[13] A course in metric geometry, 33, Amer. Math. Soc. (2001) | DOI
, , ,[14] The geometry of geodesics, Academic (1955)
,[15] The recognition problem: what is a topological manifold?, Bull. Amer. Math. Soc. 84 (1978) 832 | DOI
,[16] Higher-dimensional generalized manifolds: surgery and constructions, Eur. Math. Soc. (2016) | DOI
, , ,[17] A ghastly generalized n–manifold, Illinois J. Math. 25 (1981) 555 | DOI
, ,[18] Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347
, ,[19] 4–Dimensional locally CAT(0)–manifolds with no Riemannian smoothings, Duke Math. J. 161 (2012) 1 | DOI
, , ,[20] Homotopy negligible subsets, Compos. Math. 21 (1969) 155
, ,[21] Strongly regular mappings with compact ANR fibers are Hurewicz fiberings, Pacific J. Math. 75 (1978) 373 | DOI
,[22] Alexander duality and Hurewicz fibrations, Trans. Amer. Math. Soc. 327 (1991) 201 | DOI
,[23] The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357
,[24] Parabolic isometries of CAT(0) spaces and CAT(0) dimensions, Algebr. Geom. Topol. 4 (2004) 861 | DOI
, , ,[25] Hyperbolic manifolds, groups and actions, from: "Riemann surfaces and related topics" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 183 | DOI
,[26] The Bing–Borsuk and the Busemann conjectures, Math. Commun. 13 (2008) 163
, ,[27] Algebraic topology, Cambridge Univ. Press (2002)
,[28] Theory of retracts, Wayne State Univ. Press (1965) 234
,[29] Finding a boundary for a 3–manifold, Ann. of Math. 91 (1970) 223 | DOI
, ,[30] Rigidity of Busemann convex Finsler metrics, Comment. Math. Helv. 94 (2019) 855 | DOI
, ,[31] Quasi-isometries preserve the geometric decomposition of Haken manifolds, Invent. Math. 128 (1997) 393 | DOI
, ,[32] Any 3–dimensional G–space is a manifold, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968) 737
,[33] On the local structure and the homology of CAT(κ) spaces and Euclidean buildings, Adv. Geom. 11 (2011) 347 | DOI
,[34] Rigidity of spherical buildings and joins, Geom. Funct. Anal. 15 (2005) 720 | DOI
,[35] Geodesically complete spaces with an upper curvature bound, Geom. Funct. Anal. 29 (2019) 295 | DOI
, ,[36] Topological regularity of spaces with an upper curvature bound, J. Eur. Math. Soc. 24 (2022) 137 | DOI
, ,[37] Affine functions on CAT(κ)–spaces, Math. Z. 255 (2007) 231 | DOI
, ,[38] Improvements of upper curvature bounds, Trans. Amer. Math. Soc. 373 (2020) 7153 | DOI
, ,[39] Strong homotopy equivalence of 3–manifolds, Bull. Amer. Math. Soc. 73 (1967) 718 | DOI
,[40] Defining the boundary of a homology manifold, Proc. Amer. Math. Soc. 110 (1990) 509 | DOI
,[41] The topology of cell-like mappings, Rend. Sem. Fac. Sci. Univ. Cagliari 58 (1988) 265
, ,[42] Asymptotic topological regularity of CAT(0) spaces, Ann. Global Anal. Geom. 61 (2022) 427 | DOI
,[43] A finiteness theorem for metric spaces, J. Differential Geom. 31 (1990) 387
,[44] Gromov–Hausdorff convergence of metric spaces, from: "Differential geometry : Riemannian geometry" (editors R Greene, S T Yau), Proc. Sympos. Pure Math. 54, Amer. Math. Soc. (1993) 489 | DOI
,[45] Local triviality for Hurewicz fiberings of manifolds, Topology 3 (1965) 43 | DOI
,[46] The recognition problem for topological manifolds: a survey, Kodai Math. J. 17 (1994) 538 | DOI
,[47] Strongly convex metrics in cells, Bull. Amer. Math. Soc. 74 (1968) 171 | DOI
,[48] Link obstruction to Riemannian smoothings of locally CAT(0) 4–manifolds, preprint (2017)
,[49] An obstruction to the smoothability of singular nonpositively curved metrics on 4–manifolds by patterns of incompressible tori, Geom. Funct. Anal. 25 (2015) 1575 | DOI
,[50] The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58 (1962) 481 | DOI
,[51] Geodesics in piecewise linear manifolds, Trans. Amer. Math. Soc. 215 (1976) 1 | DOI
,[52] 4–Dimensional Busemann G–spaces are 4–manifolds, Differential Geom. Appl. 6 (1996) 245 | DOI
,[53] CAT(0) 4–manifolds possessing a single tame point are Euclidean, J. Geom. Anal. 6 (1996) 475 | DOI
,[54] Concerning locally homotopy negligible sets and characterization of l2–manifolds, Fund. Math. 101 (1978) 93 | DOI
,[55] Conditions for a mapping to have the slicing structure property, Pacific J. Math. 30 (1969) 549 | DOI
,[56] Topology of manifolds, 32, Amer. Math. Soc. (1949)
,[57] Topological regularity theorems for Alexandrov spaces, J. Math. Soc. Japan 49 (1997) 741 | DOI
,Cité par Sources :