Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give a complete classification of all –noncollapsed, complete ancient solutions to the Kähler Ricci flow with nonnegative bisectional curvature.
Li, Yu 1
@article{GT_2024_28_7_a5, author = {Li, Yu}, title = {Ancient solutions to the {K\"ahler} {Ricci} flow}, journal = {Geometry & topology}, pages = {3257--3283}, publisher = {mathdoc}, volume = {28}, number = {7}, year = {2024}, doi = {10.2140/gt.2024.28.3257}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3257/} }
Li, Yu. Ancient solutions to the Kähler Ricci flow. Geometry & topology, Tome 28 (2024) no. 7, pp. 3257-3283. doi : 10.2140/gt.2024.28.3257. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3257/
[1] The Ricci flow under almost non-negative curvature conditions, Invent. Math. 217 (2019) 95 | DOI
, , ,[2] Einstein manifolds, 10, Springer (1987) | DOI
,[3] Impossibilité de fibrer un espace euclidien par des fibres compactes, C. R. Acad. Sci. Paris 230 (1950) 2258
, ,[4] Riemannian geometry of orbifolds, PhD thesis, University of California, Los Angeles (1992)
,[5] A generalization of Hamilton’s differential Harnack inequality for the Ricci flow, J. Differential Geom. 82 (2009) 207
,[6] Einstein manifolds with nonnegative isotropic curvature are locally symmetric, Duke Math. J. 151 (2010) 1 | DOI
,[7] Ricci flow and the sphere theorem, 111, Amer. Math. Soc. (2010) | DOI
,[8] Ricci flow with surgery on manifolds with positive isotropic curvature, Ann. of Math. 190 (2019) 465 | DOI
,[9] Ancient solutions to the Ricci flow in dimension 3, Acta Math. 225 (2020) 1 | DOI
,[10] Uniqueness of compact ancient solutions to three-dimensional Ricci flow, Invent. Math. 226 (2021) 579 | DOI
, , ,[11] Ancient solutions to the Ricci flow with pinched curvature, Duke Math. J. 158 (2011) 537 | DOI
, , ,[12] Rotational symmetry of ancient solutions to the Ricci flow in higher dimensions, Geom. Topol. 27 (2023) 153 | DOI
, ,[13] Manifolds with 1∕4–pinched curvature are space forms, J. Amer. Math. Soc. 22 (2009) 287 | DOI
, ,[14] Gromov’s almost flat manifolds, 81, Soc. Math. France (1981) 148
, ,[15] How to produce a Ricci flow via Cheeger–Gromoll exhaustion, J. Eur. Math. Soc. 17 (2015) 3153 | DOI
, ,[16] On Harnack’s inequalities for the Kähler–Ricci flow, Invent. Math. 109 (1992) 247 | DOI
,[17] Limits of solutions to the Kähler–Ricci flow, J. Differential Geom. 45 (1997) 257
,[18] On dimension reduction in the Kähler–Ricci flow, Comm. Anal. Geom. 12 (2004) 305 | DOI
,[19] The conjugate heat equation and ancient solutions of the Ricci flow, Adv. Math. 228 (2011) 2891 | DOI
, ,[20] Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992) 327 | DOI
, , ,[21] Collapsing Riemannian manifolds while keeping their curvature bounded, II, J. Differential Geom. 32 (1990) 269
, ,[22] Strong uniqueness of the Ricci flow, J. Differential Geom. 82 (2009) 363
,[23] Ricci flow with surgery on four-manifolds with positive isotropic curvature, J. Differential Geom. 74 (2006) 177
, ,[24] Ancient solutions to the Ricci flow with isotropic curvature conditions, Math. Ann. 387 (2023) 1009 | DOI
, ,[25] A bound for the order of the fundamental group of a complete noncompact Ricci shrinker, Proc. Amer. Math. Soc. 144 (2016) 2623 | DOI
, ,[26] Hamilton’s Ricci flow, 77, Amer. Math. Soc. (2006) | DOI
, , ,[27] A note on compact κ–solutions of Kähler–Ricci flow, Proc. Amer. Math. Soc. 148 (2020) 3073 | DOI
, ,[28] Rigidity of κ–noncollapsed steady Kähler–Ricci solitons, Math. Ann. 377 (2020) 847 | DOI
, ,[29] A remark on compact Ricci solitons, Math. Ann. 340 (2008) 893 | DOI
, ,[30] A new proof of Mok’s generalized Frankel conjecture theorem, Proc. Amer. Math. Soc. 137 (2009) 1063 | DOI
,[31] Nonexistence of noncompact type-I ancient three-dimensional κ–solutions of Ricci flow with positive curvature, Commun. Contemp. Math. 21 (2019) 1850049 | DOI
,[32] Foundations of differential geometry, I, Interscience (1963)
, ,[33] Kähler–Ricci shrinkers and ancient solutions with nonnegative orthogonal bisectional curvature, J. Math. Pures Appl. 138 (2020) 28 | DOI
, ,[34] Ancient solutions to the Ricci flow in higher dimensions, Comm. Anal. Geom. 30 (2022) 2011 | DOI
, ,[35] Heat kernel on Ricci shrinkers, Calc. Var. Partial Differential Equations 59 (2020) 194 | DOI
, ,[36] Some geometric properties of the Bakry–Émery–Ricci tensor, Comment. Math. Helv. 78 (2003) 865 | DOI
,[37] The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differential Geom. 27 (1988) 179
,[38] Positively curved shrinking Ricci solitons are compact, J. Differential Geom. 106 (2017) 499 | DOI
, ,[39] Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math. 645 (2010) 125 | DOI
,[40] Ancient solutions to Kähler–Ricci flow, Math. Res. Lett. 12 (2005) 633 | DOI
,[41] Closed type I ancient solutions to Ricci flow, from: "Recent advances in geometric analysis" (editors Y I Lee, C S Lin, M P Tsui), Adv. Lect. Math. 11, International (2010) 147
,[42] The entropy formula for the Ricci flow and its geometric applications, preprint (2002)
,[43] Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint (2003)
,[44] Ricci flow with surgery on three-manifolds, preprint (2003)
,[45] A Lie algebraic approach to Ricci flow invariant curvature conditions and Harnack inequalities, J. Reine Angew. Math. 679 (2013) 223 | DOI
,[46] Spaces of constant curvature, McGraw-Hill (1967)
,[47] Complete shrinking Ricci solitons have finite fundamental group, Proc. Amer. Math. Soc. 136 (2008) 1803 | DOI
,[48] On three-dimensional type I κ–solutions to the Ricci flow, Proc. Amer. Math. Soc. 146 (2018) 4899 | DOI
,[49] On the finiteness of the fundamental group of a compact shrinking Ricci soliton, Colloq. Math. 107 (2007) 297 | DOI
,Cité par Sources :