Higgs bundles, harmonic maps and pleated surfaces
Geometry & topology, Tome 28 (2024) no. 7, pp. 3135-3220.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This paper unites the gauge-theoretic and hyperbolic-geometric perspectives on the asymptotic geometry of the character variety of SL(2, ) representations of a surface group. Specifically, we find an asymptotic correspondence between the analytically defined limiting configuration of a sequence of solutions to the SU(2) self-duality equations on a closed Riemann surface constructed by Mazzeo, Swoboda, Weiß and Witt, and the geometric topological shear-bend parameters of equivariant pleated surfaces in hyperbolic three-space due to Bonahon and Thurston. The geometric link comes from the nonabelian Hodge correspondence and a study of high-energy degenerations of harmonic maps. Our result has several applications. We prove: (1) the local invariance of the partial compactification of the moduli space of solutions to the self-duality equations by limiting configurations; (2) a refinement of the harmonic maps characterization of the Morgan–Shalen compactification of the character variety; and (3) a comparison between the family of complex projective structures defined by a quadratic differential and the realizations of the corresponding flat connections as Higgs bundles, as well as a determination of the asymptotic shear-bend cocycle of Thurston’s pleated surface.

DOI : 10.2140/gt.2024.28.3135
Keywords: $\mathrm{SL}(2,\mathbb{C})$–representations of surface groups, Higgs bundles, nonabelian Hodge correspondence, equivariant harmonic maps, pleated surfaces, self-duality equations, complex projective structures

Ott, Andreas 1 ; Swoboda, Jan 1 ; Wentworth, Richard 2 ; Wolf, Michael 3

1 Mathematisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
2 Department of Mathematics, University of Maryland, College Park, MD, United States
3 School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States
@article{GT_2024_28_7_a3,
     author = {Ott, Andreas and Swoboda, Jan and Wentworth, Richard and Wolf, Michael},
     title = {Higgs bundles, harmonic maps and pleated surfaces},
     journal = {Geometry & topology},
     pages = {3135--3220},
     publisher = {mathdoc},
     volume = {28},
     number = {7},
     year = {2024},
     doi = {10.2140/gt.2024.28.3135},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3135/}
}
TY  - JOUR
AU  - Ott, Andreas
AU  - Swoboda, Jan
AU  - Wentworth, Richard
AU  - Wolf, Michael
TI  - Higgs bundles, harmonic maps and pleated surfaces
JO  - Geometry & topology
PY  - 2024
SP  - 3135
EP  - 3220
VL  - 28
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3135/
DO  - 10.2140/gt.2024.28.3135
ID  - GT_2024_28_7_a3
ER  - 
%0 Journal Article
%A Ott, Andreas
%A Swoboda, Jan
%A Wentworth, Richard
%A Wolf, Michael
%T Higgs bundles, harmonic maps and pleated surfaces
%J Geometry & topology
%D 2024
%P 3135-3220
%V 28
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3135/
%R 10.2140/gt.2024.28.3135
%F GT_2024_28_7_a3
Ott, Andreas; Swoboda, Jan; Wentworth, Richard; Wolf, Michael. Higgs bundles, harmonic maps and pleated surfaces. Geometry & topology, Tome 28 (2024) no. 7, pp. 3135-3220. doi : 10.2140/gt.2024.28.3135. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3135/

[1] D G L Allegretti, Voros symbols as cluster coordinates, J. Topol. 12 (2019) 1031 | DOI

[2] D G L Allegretti, Stability conditions, cluster varieties, and Riemann–Hilbert problems from surfaces, Adv. Math. 380 (2021) 107610 | DOI

[3] A Beauville, M S Narasimhan, S Ramanan, Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989) 169 | DOI

[4] M Bestvina, Degenerations of the hyperbolic space, Duke Math. J. 56 (1988) 143 | DOI

[5] F Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. 5 (1996) 233 | DOI

[6] F Bonahon, Transverse Hölder distributions for geodesic laminations, Topology 36 (1997) 103 | DOI

[7] B H Bowditch, Group actions on trees and dendrons, Topology 37 (1998) 1275 | DOI

[8] R D Canary, D B A Epstein, P Green, Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space" (editor D B A Epstein), Lond. Math. Soc. Lect. Note Ser. 111, Cambridge Univ. Press (1987) 3

[9] I M Chiswell, Abstract length functions in groups, Math. Proc. Cambridge Philos. Soc. 80 (1976) 451 | DOI

[10] K Corlette, Flat G–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361

[11] G Daskalopoulos, S Dostoglou, R Wentworth, Character varieties and harmonic maps to R–trees, Math. Res. Lett. 5 (1998) 523 | DOI

[12] G Daskalopoulos, S Dostoglou, R Wentworth, On the Morgan–Shalen compactification of the SL(2, C) character varieties of surface groups, Duke Math. J. 101 (2000) 189 | DOI

[13] G D Daskalopoulos, R A Wentworth, Harmonic maps and Teichmüller theory, from: "Handbook of Teichmüller theory, I" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc. (2007) 33 | DOI

[14] S K Donaldson, Twisted harmonic maps and the self-duality equations, Proc. Lond. Math. Soc. 55 (1987) 127 | DOI

[15] D Dumas, Grafting, pruning, and the antipodal map on measured laminations, J. Differential Geom. 74 (2006) 93

[16] D Dumas, The Schwarzian derivative and measured laminations on Riemann surfaces, Duke Math. J. 140 (2007) 203 | DOI

[17] D Dumas, A Neitzke, Asymptotics of Hitchin’s metric on the Hitchin section, Comm. Math. Phys. 367 (2019) 127 | DOI

[18] D Dumas, M Wolf, Polynomial cubic differentials and convex polygons in the projective plane, Geom. Funct. Anal. 25 (2015) 1734 | DOI

[19] J Eells, J C Wood, Restrictions on harmonic maps of surfaces, Topology 15 (1976) 263 | DOI

[20] A Fathi, F Laudenbach, V Poénaru, Thurston’s work on surfaces, 48, Princeton Univ. Press (2012) | DOI

[21] J D Fay, Theta functions on Riemann surfaces, 352, Springer (1973)

[22] A Fenyes, A dynamical perspective on shear-bend coordinates, preprint (2015)

[23] L Fredrickson, Generic ends of the moduli space of SL(n, C)–Higgs bundles, preprint (2018)

[24] L Fredrickson, Exponential decay for the asymptotic geometry of the Hitchin metric, Comm. Math. Phys. 375 (2020) 1393 | DOI

[25] D Gaiotto, G W Moore, A Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234 (2013) 239 | DOI

[26] M Gromov, R Schoen, Harmonic maps into singular spaces and p–adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. 76 (1992) 165 | DOI

[27] R C Gunning, Lectures on Riemann surfaces, Princeton Univ. Press (1966)

[28] R C Gunning, Lectures on vector bundles over Riemann surfaces, Univ. Tokyo Press (1967)

[29] N J Hitchin, The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987) 59 | DOI

[30] L Hollands, A Neitzke, Spectral networks and Fenchel–Nielsen coordinates, Lett. Math. Phys. 106 (2016) 811 | DOI

[31] L Hollands, A Neitzke, Exact WKB and abelianization for the T3 equation, Comm. Math. Phys. 380 (2020) 131 | DOI

[32] J Hubbard, H Masur, Quadratic differentials and foliations, Acta Math. 142 (1979) 221 | DOI

[33] K Iwaki, T Nakanishi, Exact WKB analysis and cluster algebras, J. Phys. A 47 (2014) 474009 | DOI

[34] J Jost, Equilibrium maps between metric spaces, Calc. Var. Partial Differential Equations 2 (1994) 173 | DOI

[35] J Jost, S T Yau, Harmonic maps and group representations, from: "Differential geometry" (editors B Lawson, K Tenenblat), Pitman Monogr. Surveys Pure Appl. Math. 52, Longman Sci. Tech. (1991) 241

[36] Y Kamishima, S P Tan, Deformation spaces on geometric structures, from: "Aspects of low-dimensional manifolds" (editors Y Matsumoto, S Morita), Adv. Stud. Pure Math. 20, Kinokuniya (1992) 263 | DOI

[37] T Kawai, Y Takei, Algebraic analysis of singular perturbation theory, 227, Amer. Math. Soc. (2005) | DOI

[38] N J Korevaar, R M Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993) 561 | DOI

[39] N J Korevaar, R M Schoen, Global existence theorems for harmonic maps to non-locally compact spaces, Comm. Anal. Geom. 5 (1997) 333 | DOI

[40] F Labourie, Existence d’applications harmoniques tordues à valeurs dans les variétés à courbure négative, Proc. Amer. Math. Soc. 111 (1991) 877 | DOI

[41] G Levitt, Foliations and laminations on hyperbolic surfaces, Topology 22 (1983) 119 | DOI

[42] R Mazzeo, J Swoboda, H Weiß, F Witt, Limiting configurations for solutions of Hitchin’s equation, Sémin. Théor. Spectr. Géom. 31 (2014) 91 | DOI

[43] R Mazzeo, J Swoboda, H Weiss, F Witt, Ends of the moduli space of Higgs bundles, Duke Math. J. 165 (2016) 2227 | DOI

[44] R Mazzeo, J Swoboda, H Weiss, F Witt, Asymptotic geometry of the Hitchin metric, Comm. Math. Phys. 367 (2019) 151 | DOI

[45] C Mese, Uniqueness theorems for harmonic maps into metric spaces, Commun. Contemp. Math. 4 (2002) 725 | DOI

[46] Y N Minsky, Harmonic maps into hyperbolic 3–manifolds, Trans. Amer. Math. Soc. 332 (1992) 607 | DOI

[47] Y N Minsky, Harmonic maps, length, and energy in Teichmüller space, J. Differential Geom. 35 (1992) 151

[48] T Mochizuki, Asymptotic behaviour of certain families of harmonic bundles on Riemann surfaces, J. Topol. 9 (2016) 1021 | DOI

[49] J W Morgan, P B Shalen, Valuations, trees, and degenerations of hyperbolic structures, I, Ann. of Math. 120 (1984) 401 | DOI

[50] J W Morgan, P B Shalen, Free actions of surface groups on R–trees, Topology 30 (1991) 143 | DOI

[51] D Mumford, Prym varieties, I, from: "Contributions to analysis" (editors L V Ahlfors, I Kra, B Maskit, L Nirenberg), Academic (1974) 325 | DOI

[52] J P Otal, Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, 235, Soc. Math. France (1996)

[53] F Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math. 94 (1988) 53 | DOI

[54] R C Penner, J L Harer, Combinatorics of train tracks, 125, Princeton Univ. Press (1992) | DOI

[55] R M Schoen, Analytic aspects of the harmonic map problem, from: "Seminar on nonlinear partial differential equations" (editor S S Chern), Math. Sci. Res. Inst. Publ. 2, Springer (1984) 321 | DOI

[56] R K Skora, Splittings of surfaces, J. Amer. Math. Soc. 9 (1996) 605 | DOI

[57] C H Taubes, PSL(2; C) connections on 3–manifolds with L2 bounds on curvature, Camb. J. Math. 1 (2013) 239 | DOI

[58] M Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989) 449

[59] M Wolf, High energy degeneration of harmonic maps between surfaces and rays in Teichmüller space, Topology 30 (1991) 517 | DOI

[60] M Wolf, Harmonic maps from surfaces to R–trees, Math. Z. 218 (1995) 577 | DOI

[61] M Wolf, On realizing measured foliations via quadratic differentials of harmonic maps to R–trees, J. Anal. Math. 68 (1996) 107 | DOI

Cité par Sources :