Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This paper unites the gauge-theoretic and hyperbolic-geometric perspectives on the asymptotic geometry of the character variety of representations of a surface group. Specifically, we find an asymptotic correspondence between the analytically defined limiting configuration of a sequence of solutions to the self-duality equations on a closed Riemann surface constructed by Mazzeo, Swoboda, Weiß and Witt, and the geometric topological shear-bend parameters of equivariant pleated surfaces in hyperbolic three-space due to Bonahon and Thurston. The geometric link comes from the nonabelian Hodge correspondence and a study of high-energy degenerations of harmonic maps. Our result has several applications. We prove: (1) the local invariance of the partial compactification of the moduli space of solutions to the self-duality equations by limiting configurations; (2) a refinement of the harmonic maps characterization of the Morgan–Shalen compactification of the character variety; and (3) a comparison between the family of complex projective structures defined by a quadratic differential and the realizations of the corresponding flat connections as Higgs bundles, as well as a determination of the asymptotic shear-bend cocycle of Thurston’s pleated surface.
Ott, Andreas 1 ; Swoboda, Jan 1 ; Wentworth, Richard 2 ; Wolf, Michael 3
@article{GT_2024_28_7_a3, author = {Ott, Andreas and Swoboda, Jan and Wentworth, Richard and Wolf, Michael}, title = {Higgs bundles, harmonic maps and pleated surfaces}, journal = {Geometry & topology}, pages = {3135--3220}, publisher = {mathdoc}, volume = {28}, number = {7}, year = {2024}, doi = {10.2140/gt.2024.28.3135}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3135/} }
TY - JOUR AU - Ott, Andreas AU - Swoboda, Jan AU - Wentworth, Richard AU - Wolf, Michael TI - Higgs bundles, harmonic maps and pleated surfaces JO - Geometry & topology PY - 2024 SP - 3135 EP - 3220 VL - 28 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3135/ DO - 10.2140/gt.2024.28.3135 ID - GT_2024_28_7_a3 ER -
%0 Journal Article %A Ott, Andreas %A Swoboda, Jan %A Wentworth, Richard %A Wolf, Michael %T Higgs bundles, harmonic maps and pleated surfaces %J Geometry & topology %D 2024 %P 3135-3220 %V 28 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3135/ %R 10.2140/gt.2024.28.3135 %F GT_2024_28_7_a3
Ott, Andreas; Swoboda, Jan; Wentworth, Richard; Wolf, Michael. Higgs bundles, harmonic maps and pleated surfaces. Geometry & topology, Tome 28 (2024) no. 7, pp. 3135-3220. doi : 10.2140/gt.2024.28.3135. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3135/
[1] Voros symbols as cluster coordinates, J. Topol. 12 (2019) 1031 | DOI
,[2] Stability conditions, cluster varieties, and Riemann–Hilbert problems from surfaces, Adv. Math. 380 (2021) 107610 | DOI
,[3] Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989) 169 | DOI
, , ,[4] Degenerations of the hyperbolic space, Duke Math. J. 56 (1988) 143 | DOI
,[5] Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. 5 (1996) 233 | DOI
,[6] Transverse Hölder distributions for geodesic laminations, Topology 36 (1997) 103 | DOI
,[7] Group actions on trees and dendrons, Topology 37 (1998) 1275 | DOI
,[8] Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space" (editor D B A Epstein), Lond. Math. Soc. Lect. Note Ser. 111, Cambridge Univ. Press (1987) 3
, , ,[9] Abstract length functions in groups, Math. Proc. Cambridge Philos. Soc. 80 (1976) 451 | DOI
,[10] Flat G–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361
,[11] Character varieties and harmonic maps to R–trees, Math. Res. Lett. 5 (1998) 523 | DOI
, , ,[12] On the Morgan–Shalen compactification of the SL(2, C) character varieties of surface groups, Duke Math. J. 101 (2000) 189 | DOI
, , ,[13] Harmonic maps and Teichmüller theory, from: "Handbook of Teichmüller theory, I" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc. (2007) 33 | DOI
, ,[14] Twisted harmonic maps and the self-duality equations, Proc. Lond. Math. Soc. 55 (1987) 127 | DOI
,[15] Grafting, pruning, and the antipodal map on measured laminations, J. Differential Geom. 74 (2006) 93
,[16] The Schwarzian derivative and measured laminations on Riemann surfaces, Duke Math. J. 140 (2007) 203 | DOI
,[17] Asymptotics of Hitchin’s metric on the Hitchin section, Comm. Math. Phys. 367 (2019) 127 | DOI
, ,[18] Polynomial cubic differentials and convex polygons in the projective plane, Geom. Funct. Anal. 25 (2015) 1734 | DOI
, ,[19] Restrictions on harmonic maps of surfaces, Topology 15 (1976) 263 | DOI
, ,[20] Thurston’s work on surfaces, 48, Princeton Univ. Press (2012) | DOI
, , ,[21] Theta functions on Riemann surfaces, 352, Springer (1973)
,[22] A dynamical perspective on shear-bend coordinates, preprint (2015)
,[23] Generic ends of the moduli space of SL(n, C)–Higgs bundles, preprint (2018)
,[24] Exponential decay for the asymptotic geometry of the Hitchin metric, Comm. Math. Phys. 375 (2020) 1393 | DOI
,[25] Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234 (2013) 239 | DOI
, , ,[26] Harmonic maps into singular spaces and p–adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. 76 (1992) 165 | DOI
, ,[27] Lectures on Riemann surfaces, Princeton Univ. Press (1966)
,[28] Lectures on vector bundles over Riemann surfaces, Univ. Tokyo Press (1967)
,[29] The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987) 59 | DOI
,[30] Spectral networks and Fenchel–Nielsen coordinates, Lett. Math. Phys. 106 (2016) 811 | DOI
, ,[31] Exact WKB and abelianization for the T3 equation, Comm. Math. Phys. 380 (2020) 131 | DOI
, ,[32] Quadratic differentials and foliations, Acta Math. 142 (1979) 221 | DOI
, ,[33] Exact WKB analysis and cluster algebras, J. Phys. A 47 (2014) 474009 | DOI
, ,[34] Equilibrium maps between metric spaces, Calc. Var. Partial Differential Equations 2 (1994) 173 | DOI
,[35] Harmonic maps and group representations, from: "Differential geometry" (editors B Lawson, K Tenenblat), Pitman Monogr. Surveys Pure Appl. Math. 52, Longman Sci. Tech. (1991) 241
, ,[36] Deformation spaces on geometric structures, from: "Aspects of low-dimensional manifolds" (editors Y Matsumoto, S Morita), Adv. Stud. Pure Math. 20, Kinokuniya (1992) 263 | DOI
, ,[37] Algebraic analysis of singular perturbation theory, 227, Amer. Math. Soc. (2005) | DOI
, ,[38] Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993) 561 | DOI
, ,[39] Global existence theorems for harmonic maps to non-locally compact spaces, Comm. Anal. Geom. 5 (1997) 333 | DOI
, ,[40] Existence d’applications harmoniques tordues à valeurs dans les variétés à courbure négative, Proc. Amer. Math. Soc. 111 (1991) 877 | DOI
,[41] Foliations and laminations on hyperbolic surfaces, Topology 22 (1983) 119 | DOI
,[42] Limiting configurations for solutions of Hitchin’s equation, Sémin. Théor. Spectr. Géom. 31 (2014) 91 | DOI
, , , ,[43] Ends of the moduli space of Higgs bundles, Duke Math. J. 165 (2016) 2227 | DOI
, , , ,[44] Asymptotic geometry of the Hitchin metric, Comm. Math. Phys. 367 (2019) 151 | DOI
, , , ,[45] Uniqueness theorems for harmonic maps into metric spaces, Commun. Contemp. Math. 4 (2002) 725 | DOI
,[46] Harmonic maps into hyperbolic 3–manifolds, Trans. Amer. Math. Soc. 332 (1992) 607 | DOI
,[47] Harmonic maps, length, and energy in Teichmüller space, J. Differential Geom. 35 (1992) 151
,[48] Asymptotic behaviour of certain families of harmonic bundles on Riemann surfaces, J. Topol. 9 (2016) 1021 | DOI
,[49] Valuations, trees, and degenerations of hyperbolic structures, I, Ann. of Math. 120 (1984) 401 | DOI
, ,[50] Free actions of surface groups on R–trees, Topology 30 (1991) 143 | DOI
, ,[51] Prym varieties, I, from: "Contributions to analysis" (editors L V Ahlfors, I Kra, B Maskit, L Nirenberg), Academic (1974) 325 | DOI
,[52] Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, 235, Soc. Math. France (1996)
,[53] Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math. 94 (1988) 53 | DOI
,[54] Combinatorics of train tracks, 125, Princeton Univ. Press (1992) | DOI
, ,[55] Analytic aspects of the harmonic map problem, from: "Seminar on nonlinear partial differential equations" (editor S S Chern), Math. Sci. Res. Inst. Publ. 2, Springer (1984) 321 | DOI
,[56] Splittings of surfaces, J. Amer. Math. Soc. 9 (1996) 605 | DOI
,[57] PSL(2; C) connections on 3–manifolds with L2 bounds on curvature, Camb. J. Math. 1 (2013) 239 | DOI
,[58] The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989) 449
,[59] High energy degeneration of harmonic maps between surfaces and rays in Teichmüller space, Topology 30 (1991) 517 | DOI
,[60] Harmonic maps from surfaces to R–trees, Math. Z. 218 (1995) 577 | DOI
,[61] On realizing measured foliations via quadratic differentials of harmonic maps to R–trees, J. Anal. Math. 68 (1996) 107 | DOI
,Cité par Sources :