Two-dimensional metric spaces with curvature bounded above, I
Geometry & topology, Tome 28 (2024) no. 7, pp. 3023-3093 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

We determine the local geometric structure of two-dimensional metric spaces with curvature bounded above as the union of finitely many properly embedded/branched immersed Lipschitz disks. As a result, we obtain a graph structure of the topological singular point set of such a singular surface.

DOI : 10.2140/gt.2024.28.3023
Keywords: upper curvature bound, ruled surface, singular set

Nagano, Koichi 1 ; Shioya, Takashi 2 ; Yamaguchi, Takao 3

1 Department of Mathematics, University of Tsukuba, Tsukuba, Japan
2 Mathematical Institute, Tohoku University, Sendai, Japan
3 Department of Mathematics, Kyoto University, Kyoto, Japan, Department of Mathematics, University of Tsukuba, Tsukuba, Japan
@article{10_2140_gt_2024_28_3023,
     author = {Nagano, Koichi and Shioya, Takashi and Yamaguchi, Takao},
     title = {Two-dimensional metric spaces with curvature bounded above, {I}},
     journal = {Geometry & topology},
     pages = {3023--3093},
     year = {2024},
     volume = {28},
     number = {7},
     doi = {10.2140/gt.2024.28.3023},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3023/}
}
TY  - JOUR
AU  - Nagano, Koichi
AU  - Shioya, Takashi
AU  - Yamaguchi, Takao
TI  - Two-dimensional metric spaces with curvature bounded above, I
JO  - Geometry & topology
PY  - 2024
SP  - 3023
EP  - 3093
VL  - 28
IS  - 7
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3023/
DO  - 10.2140/gt.2024.28.3023
ID  - 10_2140_gt_2024_28_3023
ER  - 
%0 Journal Article
%A Nagano, Koichi
%A Shioya, Takashi
%A Yamaguchi, Takao
%T Two-dimensional metric spaces with curvature bounded above, I
%J Geometry & topology
%D 2024
%P 3023-3093
%V 28
%N 7
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3023/
%R 10.2140/gt.2024.28.3023
%F 10_2140_gt_2024_28_3023
Nagano, Koichi; Shioya, Takashi; Yamaguchi, Takao. Two-dimensional metric spaces with curvature bounded above, I. Geometry & topology, Tome 28 (2024) no. 7, pp. 3023-3093. doi: 10.2140/gt.2024.28.3023

[1] A D Aleksandrov, Ruled surfaces in metric spaces, Vestnik Leningrad. Univ. 12 (1957) 5

[2] A D Aleksandrov, Über eine Verallgemeinerung der Riemannschen Geometrie, Schr. Forschungsinst. Math. 1 (1957) 33

[3] A D Aleksandrov, V A Zalgaller, Intrinsic geometry of surfaces, 15, Amer. Math. Soc. (1967)

[4] S Alexander, R Bishop, R Ghrist, Total curvature and simple pursuit on domains of curvature bounded above, Geom. Dedicata 149 (2010) 275 | DOI

[5] S Alexander, V Kapovitch, A Petrunin, Alexandrov geometry: foundations, 236, Amer. Math. Soc. (2024)

[6] C D Aliprantis, O Burkinshaw, Principles of real analysis, North-Holland (1981)

[7] I A Arshinova, S V Buyalo, Metrics with upper-bounded curvature on 2–polyhedra, Algebra i Analiz 8 (1996) 163

[8] W Ballmann, Lectures on spaces of nonpositive curvature, 25, Birkhäuser (1995) | DOI

[9] W Ballmann, S Buyalo, Nonpositively curved metrics on 2–polyhedra, Math. Z. 222 (1996) 97 | DOI

[10] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[11] D Burago, Y Burago, S Ivanov, A course in metric geometry, 33, Amer. Math. Soc. (2001) | DOI

[12] Y D Burago, S V Buyalo, Metrics with upper-bounded curvature on 2–polyhedra, II, Algebra i Analiz 10 (1998) 62

[13] Y Burago, M Gromov, G Perelman, A D Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992) 3

[14] K Grove, P Petersen V, J Y Wu, Geometric finiteness theorems via controlled topology, Invent. Math. 99 (1990) 205 | DOI

[15] B Kleiner, The local structure of length spaces with curvature bounded above, Math. Z. 231 (1999) 409 | DOI

[16] L Kramer, On the local structure and the homology of CAT(κ) spaces and Euclidean buildings, Adv. Geom. 11 (2011) 347 | DOI

[17] A Lytchak, K Nagano, Geodesically complete spaces with an upper curvature bound, Geom. Funct. Anal. 29 (2019) 295 | DOI

[18] A Lytchak, V Schroeder, Affine functions on CAT(κ)–spaces, Math. Z. 255 (2007) 231 | DOI

[19] A Lytchak, S Stadler, Improvements of upper curvature bounds, Trans. Amer. Math. Soc. 373 (2020) 7153 | DOI

[20] A Lytchak, S Stadler, Curvature bounds of subsets in dimension two, J. Differential Geom. 127 (2024) 1245 | DOI

[21] K Nagano, Asymptotic rigidity of Hadamard 2–spaces, J. Math. Soc. Japan 52 (2000) 699 | DOI

[22] K Nagano, A sphere theorem for 2–dimensional CAT(1)–spaces, Pacific J. Math. 206 (2002) 401 | DOI

[23] K Nagano, A volume convergence theorem for Alexandrov spaces with curvature bounded above, Math. Z. 241 (2002) 127 | DOI

[24] K Nagano, T Shioya, T Yamaguchi, Two-dimensional metric spaces with curvature bounded above, II, preprint (2023)

[25] Y Otsu, H Tanoue, The Riemannian structure of Alexandrov spaces with curvature bounded above, preprint (1999)

[26] A Petrunin, S Stadler, Metric-minimizing surfaces revisited, Geom. Topol. 23 (2019) 3111 | DOI

[27] Y G Reshetnyak, On the theory of spaces with curvature no greater than K, Mat. Sb. 52(94) (1960) 789

[28] Y G Reshetnyak, Two-dimensional manifolds of bounded curvature, from: "Geometry, IV", Encycl. Math. Sci. 70, Springer (1993) 3 | DOI

[29] S Stadler, The structure of minimal surfaces in CAT(0) spaces, J. Eur. Math. Soc. 23 (2021) 3521 | DOI

[30] T Yamaguchi, A convergence theorem in the geometry of Alexandrov spaces, from: "Actes de la Table Ronde de Géométrie Différentielle" (editor A L Besse), Sémin. Congr. 1, Soc. Math. France (1996) 601

[31] T Yamaguchi, Upper curvature bounds and singularities, from: "Noncommutativity and singularities" (editors J P Bourguignon, M Kotani, Y Maeda, N Tose), Adv. Stud. Pure Math. 55, Math. Soc. Japan (2009) 161 | DOI

[32] T Yamaguchi, Z Zhang, Limits of manifolds with boundary, preprint (2024)

Cité par Sources :