Holomorphic 1–forms on the moduli space of curves
Geometry & topology, Tome 28 (2024) no. 7, pp. 3001-3022.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Since the 1960s it has been well known that there are no nontrivial closed holomorphic 1–forms on the moduli space g of smooth projective curves of genus g > 2. We strengthen this result, proving that for g 5 there are no nontrivial holomorphic 1–forms. With this aim, we prove an extension result for sections of locally free sheaves on a projective variety X. More precisely, we give a characterization for the surjectivity of the restriction map ρD: H0() H0(|D) for divisors D in the linear system of a sufficiently large multiple of a big and semiample line bundle . Then we apply this to the line bundle given by the Hodge class on the Deligne–Mumford compactification of g.

DOI : 10.2140/gt.2024.28.3001
Keywords: moduli space, 1–forms, extension of sections, positivity

Favale, Filippo Francesco 1 ; Pirola, Gian Pietro 1 ; Torelli, Sara 2

1 Dipartimento di Matematica Felice Casorati, Università degli Studi di Pavia, Pavia, Italy
2 Institut für Algebraische Geometrie, Leibniz Universität Hannover, Hannover, Germany
@article{GT_2024_28_7_a0,
     author = {Favale, Filippo Francesco and Pirola, Gian Pietro and Torelli, Sara},
     title = {Holomorphic 1{\textendash}forms on the moduli space of curves},
     journal = {Geometry & topology},
     pages = {3001--3022},
     publisher = {mathdoc},
     volume = {28},
     number = {7},
     year = {2024},
     doi = {10.2140/gt.2024.28.3001},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3001/}
}
TY  - JOUR
AU  - Favale, Filippo Francesco
AU  - Pirola, Gian Pietro
AU  - Torelli, Sara
TI  - Holomorphic 1–forms on the moduli space of curves
JO  - Geometry & topology
PY  - 2024
SP  - 3001
EP  - 3022
VL  - 28
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3001/
DO  - 10.2140/gt.2024.28.3001
ID  - GT_2024_28_7_a0
ER  - 
%0 Journal Article
%A Favale, Filippo Francesco
%A Pirola, Gian Pietro
%A Torelli, Sara
%T Holomorphic 1–forms on the moduli space of curves
%J Geometry & topology
%D 2024
%P 3001-3022
%V 28
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3001/
%R 10.2140/gt.2024.28.3001
%F GT_2024_28_7_a0
Favale, Filippo Francesco; Pirola, Gian Pietro; Torelli, Sara. Holomorphic 1–forms on the moduli space of curves. Geometry & topology, Tome 28 (2024) no. 7, pp. 3001-3022. doi : 10.2140/gt.2024.28.3001. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.3001/

[1] A Andreotti, Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. France 91 (1963) 1

[2] A Andreotti, H Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962) 193

[3] E Arbarello, M Cornalba, P A Griffiths, Geometry of algebraic curves, II, 268, Springer (2011) | DOI

[4] M F Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957) 181 | DOI

[5] W L Baily Jr., A Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. 84 (1966) 442 | DOI

[6] W Barth, C Peters, A Van De Ven, Compact complex surfaces, 4, Springer (1984) | DOI

[7] I Biswas, E Colombo, P Frediani, G P Pirola, A Hodge theoretic projective structure on compact Riemann surfaces, J. Math. Pures Appl. 149 (2021) 1 | DOI

[8] F F Favale, S Torelli, Covering of elliptic curves and the kernel of the Prym map, Matematiche (Catania) 72 (2017) 155 | DOI

[9] F F Favale, J C Naranjo, G P Pirola, On the Xiao conjecture for plane curves, Geom. Dedicata 195 (2018) 193 | DOI

[10] V González-Alonso, S Torelli, Families of curves with Higgs field of arbitrarily large kernel, Bull. Lond. Math. Soc. 53 (2021) 493 | DOI

[11] V González-Alonso, L Stoppino, S Torelli, On the rank of the flat unitary summand of the Hodge bundle, Trans. Amer. Math. Soc. 372 (2019) 8663 | DOI

[12] P Griffiths, J Harris, Principles of algebraic geometry, Wiley (1978) | DOI

[13] A Grothendieck, Éléments de géométrie algébrique, III : Étude cohomologique des faisceaux cohérents, I, Inst. Hautes Études Sci. Publ. Math. 11 (1961) 5

[14] J Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983) 221 | DOI

[15] J Harris, I Morrison, Moduli of curves, 187, Springer (1998) | DOI

[16] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[17] J I Igusa, A desingularization problem in the theory of Siegel modular functions, Math. Ann. 168 (1967) 228 | DOI

[18] Y Kawamata, A generalization of Kodaira–Ramanujam’s vanishing theorem, Math. Ann. 261 (1982) 43 | DOI

[19] R Lazarsfeld, Positivity in algebraic geometry, I : Classical setting : line bundles and linear series, 48, Springer (2004) | DOI

[20] A F Lopez, Noether–Lefschetz theory and the Picard group of projective surfaces, 438, Amer. Math. Soc. (1991) | DOI

[21] D Mumford, Abelian quotients of the Teichmüller modular group, J. Anal. Math. 18 (1967) 227 | DOI

[22] J C Ottem, Ample subvarieties and q–ample divisors, Adv. Math. 229 (2012) 2868 | DOI

[23] G P Pirola, S Torelli, Massey products and Fujita decompositions on fibrations of curves, Collect. Math. 71 (2020) 39 | DOI

[24] I Satake, On the compactification of the Siegel space, J. Indian Math. Soc. 20 (1956) 259 | DOI

[25] A J Sommese, Concavity theorems, Math. Ann. 235 (1978) 37 | DOI

[26] A J Sommese, Submanifolds of abelian varieties, Math. Ann. 233 (1978) 229 | DOI

[27] B Totaro, Line bundles with partially vanishing cohomology, J. Eur. Math. Soc. 15 (2013) 731 | DOI

[28] C Voisin, Hodge theory and complex algebraic geometry, II, 77, Cambridge Univ. Press (2003) | DOI

Cité par Sources :