Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We introduce the moduli stack of –marked stable at most cuspidal curves of genus and we use it to determine the integral Chow ring of . Along the way, we also determine the integral Chow ring of .
Di Lorenzo, Andrea 1 ; Pernice, Michele 2 ; Vistoli, Angelo 3
@article{GT_2024_28_6_a6, author = {Di Lorenzo, Andrea and Pernice, Michele and Vistoli, Angelo}, title = {Stable cuspidal curves and the integral {Chow} ring of {\ensuremath{\mathscr{M}}} 2,1}, journal = {Geometry & topology}, pages = {2915--2970}, publisher = {mathdoc}, volume = {28}, number = {6}, year = {2024}, doi = {10.2140/gt.2024.28.2915}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2915/} }
TY - JOUR AU - Di Lorenzo, Andrea AU - Pernice, Michele AU - Vistoli, Angelo TI - Stable cuspidal curves and the integral Chow ring of ℳ 2,1 JO - Geometry & topology PY - 2024 SP - 2915 EP - 2970 VL - 28 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2915/ DO - 10.2140/gt.2024.28.2915 ID - GT_2024_28_6_a6 ER -
%0 Journal Article %A Di Lorenzo, Andrea %A Pernice, Michele %A Vistoli, Angelo %T Stable cuspidal curves and the integral Chow ring of ℳ 2,1 %J Geometry & topology %D 2024 %P 2915-2970 %V 28 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2915/ %R 10.2140/gt.2024.28.2915 %F GT_2024_28_6_a6
Di Lorenzo, Andrea; Pernice, Michele; Vistoli, Angelo. Stable cuspidal curves and the integral Chow ring of ℳ 2,1. Geometry & topology, Tome 28 (2024) no. 6, pp. 2915-2970. doi : 10.2140/gt.2024.28.2915. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2915/
[1] Singularities with Gm–action and the log minimal model program for Mg, J. Reine Angew. Math. 721 (2016) 1 | DOI
, , ,[2] Second flip in the Hassett–Keel program : existence of good moduli spaces, Compos. Math. 153 (2017) 1584 | DOI
, , ,[3] Second flip in the Hassett–Keel program : projectivity, Int. Math. Res. Not. 2017 (2017) 7375 | DOI
, , ,[4] Second flip in the Hassett–Keel program : a local description, Compos. Math. 153 (2017) 1547 | DOI
, , , ,[5] Chow rings of stacks of prestable curves, I, Forum Math. Sigma 10 (2022) | DOI
, ,[6] Chow rings of stacks of prestable curves, II, J. Reine Angew. Math. 800 (2023) 55 | DOI
, ,[7] The Chow ring of the stack of hyperelliptic curves of odd genus, Int. Math. Res. Not. 2021 (2021) 2642 | DOI
,[8] Cohomological invariants of the stack of hyperelliptic curves of odd genus, Transform. Groups 26 (2021) 165 | DOI
,[9] Polarized twisted conics and moduli of stable curves of genus two, preprint (2021)
, ,[10] The integral Chow ring of the stack of smooth non-hyperelliptic curves of genus three, Trans. Amer. Math. Soc. 374 (2021) 5583 | DOI
, , ,[11] The integral Chow ring of the stack of at most 1–nodal rational curves, Comm. Algebra 36 (2008) 581 | DOI
, ,[12] The integral Chow ring of the stack of hyperelliptic curves of even genus, Math. Res. Lett. 16 (2009) 27 | DOI
, ,[13] Equivariant intersection theory, Invent. Math. 131 (1998) 595 | DOI
, ,[14] Chow rings of moduli spaces of curves, PhD thesis, Universiteit van Amsterdam (1988)
,[15] Chow rings of moduli spaces of curves, I : The Chow ring of M3, Ann. of Math. 132 (1990) 331 | DOI
,[16] The Chow ring of the stack of rational curves with at most 3 nodes, Comm. Algebra 38 (2010) 3125 | DOI
,[17] Intersection theory, 2, Springer (1998) | DOI
,[18] Log canonical models for the moduli space of curves: the first divisorial contraction, Trans. Amer. Math. Soc. 361 (2009) 4471 | DOI
, ,[19] Algebraic spaces, 203, Springer (1971) | DOI
,[20] The integral Chow ring of M2, Algebr. Geom. 8 (2021) 286 | DOI
,[21] Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II : Geometry" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271 | DOI
,[22] Ar–stable curves and the Chow ring of M3, PhD thesis, Scuola Normale Superiore (2022)
,[23] The integral Chow ring of the stack of 1–pointed hyperelliptic curves, Int. Math. Res. Not. 2022 (2022) 11539 | DOI
,[24] The (almost) integral Chow ring of M3, preprint (2023)
,[25] The (almost) integral Chow ring of M37, preprint (2023)
,[26] Group actions on stacks and applications, Michigan Math. J. 53 (2005) 209 | DOI
,[27] A new compactification of the moduli space of curves, Compos. Math. 78 (1991) 297
,[28] Towards a classification of modular compactifications of Mg,n, Invent. Math. 192 (2013) 459 | DOI
,[29] Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989) 613 | DOI
,[30] The Chow ring of M2, Invent. Math. 131 (1998) 635 | DOI
,Cité par Sources :