Stable cuspidal curves and the integral Chow ring of ℳ 2,1
Geometry & topology, Tome 28 (2024) no. 6, pp. 2915-2970.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce the moduli stack ~g,n of n–marked stable at most cuspidal curves of genus g and we use it to determine the integral Chow ring of ¯2,1. Along the way, we also determine the integral Chow ring of ¯1,2.

DOI : 10.2140/gt.2024.28.2915
Keywords: Chow rings, moduli of curves, stacks, intersection theory

Di Lorenzo, Andrea 1 ; Pernice, Michele 2 ; Vistoli, Angelo 3

1 Department of Mathematics, Humboldt-Universität zu Berlin, Berlin, Germany, Dipartimento di Matematica, Università di Pisa, Pisa, Italy
2 Scuola Normale Superiore, Pisa, Italy, Department of Mathematics, KTH Stockholm, Stockholm, Sweden
3 Scuola Normale Superiore, Pisa, Italy
@article{GT_2024_28_6_a6,
     author = {Di Lorenzo, Andrea and Pernice, Michele and Vistoli, Angelo},
     title = {Stable cuspidal curves and the integral {Chow} ring of {\ensuremath{\mathscr{M}}} 2,1},
     journal = {Geometry & topology},
     pages = {2915--2970},
     publisher = {mathdoc},
     volume = {28},
     number = {6},
     year = {2024},
     doi = {10.2140/gt.2024.28.2915},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2915/}
}
TY  - JOUR
AU  - Di Lorenzo, Andrea
AU  - Pernice, Michele
AU  - Vistoli, Angelo
TI  - Stable cuspidal curves and the integral Chow ring of ℳ 2,1
JO  - Geometry & topology
PY  - 2024
SP  - 2915
EP  - 2970
VL  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2915/
DO  - 10.2140/gt.2024.28.2915
ID  - GT_2024_28_6_a6
ER  - 
%0 Journal Article
%A Di Lorenzo, Andrea
%A Pernice, Michele
%A Vistoli, Angelo
%T Stable cuspidal curves and the integral Chow ring of ℳ 2,1
%J Geometry & topology
%D 2024
%P 2915-2970
%V 28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2915/
%R 10.2140/gt.2024.28.2915
%F GT_2024_28_6_a6
Di Lorenzo, Andrea; Pernice, Michele; Vistoli, Angelo. Stable cuspidal curves and the integral Chow ring of ℳ 2,1. Geometry & topology, Tome 28 (2024) no. 6, pp. 2915-2970. doi : 10.2140/gt.2024.28.2915. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2915/

[1] J Alper, M Fedorchuk, D I Smyth, Singularities with Gm–action and the log minimal model program for Mg, J. Reine Angew. Math. 721 (2016) 1 | DOI

[2] J Alper, M Fedorchuk, D I Smyth, Second flip in the Hassett–Keel program : existence of good moduli spaces, Compos. Math. 153 (2017) 1584 | DOI

[3] J Alper, M Fedorchuk, D I Smyth, Second flip in the Hassett–Keel program : projectivity, Int. Math. Res. Not. 2017 (2017) 7375 | DOI

[4] J Alper, M Fedorchuk, D I Smyth, F Van Der Wyck, Second flip in the Hassett–Keel program : a local description, Compos. Math. 153 (2017) 1547 | DOI

[5] Y Bae, J Schmitt, Chow rings of stacks of prestable curves, I, Forum Math. Sigma 10 (2022) | DOI

[6] Y Bae, J Schmitt, Chow rings of stacks of prestable curves, II, J. Reine Angew. Math. 800 (2023) 55 | DOI

[7] A Di Lorenzo, The Chow ring of the stack of hyperelliptic curves of odd genus, Int. Math. Res. Not. 2021 (2021) 2642 | DOI

[8] A Di Lorenzo, Cohomological invariants of the stack of hyperelliptic curves of odd genus, Transform. Groups 26 (2021) 165 | DOI

[9] A Di Lorenzo, A Vistoli, Polarized twisted conics and moduli of stable curves of genus two, preprint (2021)

[10] A Di Lorenzo, D Fulghesu, A Vistoli, The integral Chow ring of the stack of smooth non-hyperelliptic curves of genus three, Trans. Amer. Math. Soc. 374 (2021) 5583 | DOI

[11] D Edidin, D Fulghesu, The integral Chow ring of the stack of at most 1–nodal rational curves, Comm. Algebra 36 (2008) 581 | DOI

[12] D Edidin, D Fulghesu, The integral Chow ring of the stack of hyperelliptic curves of even genus, Math. Res. Lett. 16 (2009) 27 | DOI

[13] D Edidin, W Graham, Equivariant intersection theory, Invent. Math. 131 (1998) 595 | DOI

[14] C Faber, Chow rings of moduli spaces of curves, PhD thesis, Universiteit van Amsterdam (1988)

[15] C Faber, Chow rings of moduli spaces of curves, I : The Chow ring of M3, Ann. of Math. 132 (1990) 331 | DOI

[16] D Fulghesu, The Chow ring of the stack of rational curves with at most 3 nodes, Comm. Algebra 38 (2010) 3125 | DOI

[17] W Fulton, Intersection theory, 2, Springer (1998) | DOI

[18] B Hassett, D Hyeon, Log canonical models for the moduli space of curves: the first divisorial contraction, Trans. Amer. Math. Soc. 361 (2009) 4471 | DOI

[19] D Knutson, Algebraic spaces, 203, Springer (1971) | DOI

[20] E Larson, The integral Chow ring of M2, Algebr. Geom. 8 (2021) 286 | DOI

[21] D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II : Geometry" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271 | DOI

[22] M Pernice, Ar–stable curves and the Chow ring of M3, PhD thesis, Scuola Normale Superiore (2022)

[23] M Pernice, The integral Chow ring of the stack of 1–pointed hyperelliptic curves, Int. Math. Res. Not. 2022 (2022) 11539 | DOI

[24] M Pernice, The (almost) integral Chow ring of M3, preprint (2023)

[25] M Pernice, The (almost) integral Chow ring of M37, preprint (2023)

[26] M Romagny, Group actions on stacks and applications, Michigan Math. J. 53 (2005) 209 | DOI

[27] D Schubert, A new compactification of the moduli space of curves, Compos. Math. 78 (1991) 297

[28] D I Smyth, Towards a classification of modular compactifications of Mg,n, Invent. Math. 192 (2013) 459 | DOI

[29] A Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989) 613 | DOI

[30] A Vistoli, The Chow ring of M2, Invent. Math. 131 (1998) 635 | DOI

Cité par Sources :