Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a homological mirror symmetry result for maximally degenerating families of hypersurfaces in (B–model) and their mirror toric Landau–Ginzburg A–models. The main technical ingredient of our construction is a “fiberwise wrapped” version of the Fukaya category of a toric Landau–Ginzburg model. With the definition in hand, we construct a fibered admissible Lagrangian submanifold whose fiberwise wrapped Floer cohomology is isomorphic to the ring of regular functions of the hypersurface. It follows that the derived category of coherent sheaves of the hypersurface quasiembeds into the fiberwise wrapped Fukaya category of the mirror. We also discuss an extension to complete intersections.
Abouzaid, Mohammed 1 ; Auroux, Denis 2
@article{GT_2024_28_6_a5, author = {Abouzaid, Mohammed and Auroux, Denis}, title = {Homological mirror symmetry for hypersurfaces in {(\ensuremath{\mathbb{C}}\ensuremath{*})n}}, journal = {Geometry & topology}, pages = {2825--2914}, publisher = {mathdoc}, volume = {28}, number = {6}, year = {2024}, doi = {10.2140/gt.2024.28.2825}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2825/} }
TY - JOUR AU - Abouzaid, Mohammed AU - Auroux, Denis TI - Homological mirror symmetry for hypersurfaces in (ℂ∗)n JO - Geometry & topology PY - 2024 SP - 2825 EP - 2914 VL - 28 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2825/ DO - 10.2140/gt.2024.28.2825 ID - GT_2024_28_6_a5 ER -
Abouzaid, Mohammed; Auroux, Denis. Homological mirror symmetry for hypersurfaces in (ℂ∗)n. Geometry & topology, Tome 28 (2024) no. 6, pp. 2825-2914. doi : 10.2140/gt.2024.28.2825. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2825/
[1] A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci. 112 (2010) 191 | DOI
,[2] Homological mirror symmetry for punctured spheres, J. Amer. Math. Soc. 26 (2013) 1051 | DOI
, , , , ,[3] Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces, Publ. Math. Inst. Hautes Études Sci. 123 (2016) 199 | DOI
, , ,[4] Generating Fukaya categories of LG models, in preparation
, ,[5] Lefschetz fibration models in wrapped Floer cohomology, in preparation
, ,[6] Khovanov homology from Floer cohomology, J. Amer. Math. Soc. 32 (2019) 1 | DOI
, ,[7] Complex analysis: an introduction to the theory of analytic functions of one complex variable, McGraw-Hill (1978)
,[8] A Lagrangian Piunikhin–Salamon–Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not. 2008 (2008) | DOI
,[9] A beginner’s introduction to Fukaya categories, from: "Contact and symplectic topology" (editors F Bourgeois, V Colin, A Stipsicz), Bolyai Soc. Math. Stud. 26, Bolyai Math. Soc. (2014) 85 | DOI
,[10] Categorical mirror symmetry on cohomology for a complex genus 2 curve, Adv. Math. 375 (2020) 107392 | DOI
,[11] SYZ mirror symmetry for toric Calabi–Yau manifolds, J. Differential Geom. 90 (2012) 177
, , ,[12] Enumerative meaning of mirror maps for toric Calabi–Yau manifolds, Adv. Math. 244 (2013) 605 | DOI
, , ,[13] Duality for toric Landau–Ginzburg models, Adv. Theor. Math. Phys. 21 (2017) 243 | DOI
,[14] Mirror symmetry for honeycombs, Trans. Amer. Math. Soc. 373 (2020) 71 | DOI
, ,[15] Mirror symmetry for very affine hypersurfaces, Acta Math. 229 (2022) 287 | DOI
, ,[16] Covariantly functorial wrapped Floer theory on Liouville sectors, Publ. Math. Inst. Hautes Études Sci. 131 (2020) 73 | DOI
, , ,[17] Microlocal Morse theory of wrapped Fukaya categories, Ann. of Math. 199 (2024) 943 | DOI
, , ,[18] Sectorial descent for wrapped Fukaya categories, J. Amer. Math. Soc. 37 (2024) 499 | DOI
, , ,[19] Bounded analytic functions, 236, Springer (2007) | DOI
,[20] Floer theory and reduced cohomology on open manifolds, Geom. Topol. 27 (2023) 1273 | DOI
,[21] Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 | DOI
,[22] Towards mirror symmetry for varieties of general type, Adv. Math. 308 (2017) 208 | DOI
, , ,[23] Kaehler structures on toric varieties, J. Differential Geom. 40 (1994) 285
,[24] Monodromy of monomially admissible Fukaya–Seidel categories mirror to toric varieties, Adv. Math. 350 (2019) 662 | DOI
,[25] Aspects of functoriality in homological mirror symmetry for toric varieties, Adv. Math. 401 (2022) 108317 | DOI
, ,[26] Mirror symmetry, preprint (2000)
, ,[27] Homological mirror symmetry for open Riemann surfaces from pair-of-pants decompositions, preprint (2015)
,[28] Auslander orders over nodal stacky curves and partially wrapped Fukaya categories, J. Topol. 11 (2018) 615 | DOI
, ,[29] Homological mirror symmetry for higher-dimensional pairs of pants, Compos. Math. 156 (2020) 1310 | DOI
, ,[30] A construction of quotient A∞–categories, Homology Homotopy Appl. 8 (2006) 157 | DOI
, ,[31] J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2004) | DOI
, ,[32] Mirror symmetry for the Landau–Ginzburg A–model M = Cn, W = z1⋯zn, Duke Math. J. 168 (2019) 1 | DOI
,[33] Boundary behaviour of conformal maps, 299, Springer (1992) | DOI
,[34] A long exact sequence for symplectic Floer cohomology, Topology 42 (2003) 1003 | DOI
,[35] Fukaya categories and Picard–Lefschetz theory, Eur. Math. Soc. (2008) | DOI
,[36] On the homological mirror symmetry conjecture for pairs of pants, J. Differential Geom. 89 (2011) 271
,[37] On partially wrapped Fukaya categories, J. Topol. 12 (2019) 372 | DOI
,[38] Orlov and Viterbo functors in partially wrapped Fukaya categories, preprint (2019)
,[39] An introduction to homological algebra, 38, Cambridge Univ. Press (1994) | DOI
,Cité par Sources :