Moduli spaces of residueless meromorphic differentials and the KP hierarchy
Geometry & topology, Tome 28 (2024) no. 6, pp. 2793-2824.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that the cohomology classes of the moduli spaces of residueless meromorphic differentials, ie the closures, in the moduli space of stable curves, of the loci of smooth curves whose marked points are the zeros and poles of prescribed orders of a meromorphic differential with vanishing residues, form a partial cohomological field theory (CohFT) of infinite rank. To this partial CohFT we apply the double ramification hierarchy construction to produce a Hamiltonian system of evolutionary PDEs. We prove that its reduction to the case of differentials with exactly two zeros and any number of poles coincides with the KP hierarchy up to a change of variables.

DOI : 10.2140/gt.2024.28.2793
Keywords: moduli space of curves, meromorphic differentials, integrable systems, KP hierarchy

Buryak, Alexandr 1 ; Rossi, Paolo 2 ; Zvonkine, Dimitri 3

1 Faculty of Mathematics, National Research University Higher School of Economics, Moscow, Russia, Center for Advanced Studies, Skolkovo Institute of Science and Technology, Moscow, Russia, P G Demidov Yaroslavl State University, Yaroslavl, Russia
2 Dipartimento di Matematica “Tullio Levi-Civita”, Universita degli Studi di Padova, Padova, Italy
3 Université de Versailles Saint-Quentin-en-Yvelines, CNRS, Versailles, France
@article{GT_2024_28_6_a4,
     author = {Buryak, Alexandr and Rossi, Paolo and Zvonkine, Dimitri},
     title = {Moduli spaces of residueless meromorphic differentials and the {KP} hierarchy},
     journal = {Geometry & topology},
     pages = {2793--2824},
     publisher = {mathdoc},
     volume = {28},
     number = {6},
     year = {2024},
     doi = {10.2140/gt.2024.28.2793},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2793/}
}
TY  - JOUR
AU  - Buryak, Alexandr
AU  - Rossi, Paolo
AU  - Zvonkine, Dimitri
TI  - Moduli spaces of residueless meromorphic differentials and the KP hierarchy
JO  - Geometry & topology
PY  - 2024
SP  - 2793
EP  - 2824
VL  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2793/
DO  - 10.2140/gt.2024.28.2793
ID  - GT_2024_28_6_a4
ER  - 
%0 Journal Article
%A Buryak, Alexandr
%A Rossi, Paolo
%A Zvonkine, Dimitri
%T Moduli spaces of residueless meromorphic differentials and the KP hierarchy
%J Geometry & topology
%D 2024
%P 2793-2824
%V 28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2793/
%R 10.2140/gt.2024.28.2793
%F GT_2024_28_6_a4
Buryak, Alexandr; Rossi, Paolo; Zvonkine, Dimitri. Moduli spaces of residueless meromorphic differentials and the KP hierarchy. Geometry & topology, Tome 28 (2024) no. 6, pp. 2793-2824. doi : 10.2140/gt.2024.28.2793. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2793/

[1] A Arsie, A Buryak, P Lorenzoni, P Rossi, Flat F-manifolds, F-CohFTs, and integrable hierarchies, Comm. Math. Phys. 388 (2021) 291 | DOI

[2] A Arsie, A Buryak, P Lorenzoni, P Rossi, Semisimple flat F-manifolds in higher genus, Comm. Math. Phys. 397 (2023) 141 | DOI

[3] Y Bae, D Holmes, R Pandharipande, J Schmitt, R Schwarz, Pixton’s formula and Abel–Jacobi theory on the Picard stack, Acta Math. 230 (2023) 205 | DOI

[4] M Bainbridge, D Chen, Q Gendron, S Grushevsky, M Möller, Compactification of strata of abelian differentials, Duke Math. J. 167 (2018) 2347 | DOI

[5] M Bainbridge, D Chen, Q Gendron, S Grushevsky, M Möller, The moduli space of multi-scale differentials, preprint (2019)

[6] A Buryak, Double ramification cycles and integrable hierarchies, Comm. Math. Phys. 336 (2015) 1085 | DOI

[7] A Buryak, B Dubrovin, J Guéré, P Rossi, Tau-structure for the double ramification hierarchies, Comm. Math. Phys. 363 (2018) 191 | DOI

[8] A Buryak, B Dubrovin, J Guéré, P Rossi, Integrable systems of double ramification type, Int. Math. Res. Not. 2020 (2020) 10381 | DOI

[9] A Buryak, P Rossi, Recursion relations for double ramification hierarchies, Comm. Math. Phys. 342 (2016) 533 | DOI

[10] A Buryak, P Rossi, Extended r–spin theory in all genera and the discrete KdV hierarchy, Adv. Math. 386 (2021) 107794 | DOI

[11] A Buryak, P Rossi, Quadratic double ramification integrals and the noncommutative KdV hierarchy, Bull. Lond. Math. Soc. 53 (2021) 843 | DOI

[12] A Buryak, P Rossi, A generalisation of Witten’s conjecture for the Pixton class and the noncommutative KDV hierarchy, J. Inst. Math. Jussieu 22 (2023) 2987 | DOI

[13] A Buryak, S Shadrin, L Spitz, D Zvonkine, Integrals of ψ–classes over double ramification cycles, Amer. J. Math. 137 (2015) 699 | DOI

[14] M Costantini, M Möller, J Zachhuber, The Chern classes and Euler characteristic of the moduli spaces of abelian differentials, Forum Math. Pi 10 (2022) | DOI

[15] L A Dickey, Soliton equations and Hamiltonian systems, 12, World Sci. (1991) | DOI

[16] B Dubrovin, Y Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, preprint (2001)

[17] C Faber, R Pandharipande, Logarithmic series and Hodge integrals in the tautological ring, Michigan Math. J. 48 (2000) 215 | DOI

[18] G Farkas, R Pandharipande, The moduli space of twisted canonical divisors, J. Inst. Math. Jussieu 17 (2018) 615 | DOI

[19] R Hain, Normal functions and the geometry of moduli spaces of curves, from: "Handbook of moduli, I" (editors G Farkas, I Morrison), Adv. Lect. Math. 24, International (2013) 527

[20] E N Ionel, Topological recursive relations in H2g(Mg,n), Invent. Math. 148 (2002) 627 | DOI

[21] F Janda, R Pandharipande, A Pixton, D Zvonkine, Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017) 221 | DOI

[22] M Kontsevich, Y Manin, Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525 | DOI

[23] S Q Liu, Y Ruan, Y Zhang, BCFG Drinfeld–Sokolov hierarchies and FJRW-theory, Invent. Math. 201 (2015) 711 | DOI

[24] P Rossi, Integrability, quantization and moduli spaces of curves, Symmetry Integrability Geom. Methods Appl. 13 (2017) 060 | DOI

[25] A Sauvaget, Cohomology classes of strata of differentials, Geom. Topol. 23 (2019) 1085 | DOI

Cité par Sources :