Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We first show that a Kähler cone appears as the tangent cone of a complete expanding gradient Kähler–Ricci soliton with quadratic curvature decay with derivatives if and only if it has a smooth canonical model (on which the soliton lives). This allows us to classify two-dimensional complete expanding gradient Kähler–Ricci solitons with quadratic curvature decay with derivatives. We then show that any two-dimensional complete shrinking gradient Kähler–Ricci soliton whose scalar curvature tends to zero at infinity is, up to pullback by an element of , either the flat Gaussian shrinking soliton on or the –invariant shrinking gradient Kähler–Ricci soliton of Feldman, Ilmanen and Knopf on the blowup of at one point. Finally, we show that up to pullback by an element of , the only complete shrinking gradient Kähler–Ricci soliton with bounded Ricci curvature on is the flat Gaussian shrinking soliton, and on the total space of for is the –invariant example of Feldman, Ilmanen and Knopf. In the course of the proof, we establish the uniqueness of the soliton vector field of a complete shrinking gradient Kähler–Ricci soliton with bounded Ricci curvature in the Lie algebra of a torus. A key tool used to achieve this result is the Duistermaat–Heckman theorem from symplectic geometry. This provides the first step towards understanding the relationship between complete shrinking gradient Kähler–Ricci solitons and algebraic geometry.
Conlon, Ronan J 1 ; Deruelle, Alix 2 ; Sun, Song 3
@article{GT_2024_28_1_a3, author = {Conlon, Ronan J and Deruelle, Alix and Sun, Song}, title = {Classification results for expanding and shrinking gradient {K\"ahler{\textendash}Ricci} solitons}, journal = {Geometry & topology}, pages = {267--351}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2024}, doi = {10.2140/gt.2024.28.267}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.267/} }
TY - JOUR AU - Conlon, Ronan J AU - Deruelle, Alix AU - Sun, Song TI - Classification results for expanding and shrinking gradient Kähler–Ricci solitons JO - Geometry & topology PY - 2024 SP - 267 EP - 351 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.267/ DO - 10.2140/gt.2024.28.267 ID - GT_2024_28_1_a3 ER -
%0 Journal Article %A Conlon, Ronan J %A Deruelle, Alix %A Sun, Song %T Classification results for expanding and shrinking gradient Kähler–Ricci solitons %J Geometry & topology %D 2024 %P 267-351 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.267/ %R 10.2140/gt.2024.28.267 %F GT_2024_28_1_a3
Conlon, Ronan J; Deruelle, Alix; Sun, Song. Classification results for expanding and shrinking gradient Kähler–Ricci solitons. Geometry & topology, Tome 28 (2024) no. 1, pp. 267-351. doi : 10.2140/gt.2024.28.267. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.267/
[1] Morse–Bott theory and equivariant cohomology, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 123 | DOI
, ,[2] Lectures on Kähler manifolds, Eur. Math. Soc. (2006) | DOI
,[3] Several complex variables, VI : Complex manifolds, 69, Springer (1990)
, , editors,[4] On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000) 1 | DOI
,[5] Heat kernels and Dirac operators, 298, Springer (2004)
, , ,[6] Complex optimal transport and the pluripotential theory of Kähler–Ricci solitons, preprint (2014)
, ,[7] Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010) 405 | DOI
, , , ,[8] Sasakian geometry, Oxford Univ. Press (2008) | DOI
, ,[9] Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1967/68) 336 | DOI
,[10] Gradient Kähler Ricci solitons, from: "Géométrie différentielle, physique mathématique, mathématiques et société, I" (editor O Hijazi), Astérisque 321, Soc. Math. France (2008) 51
,[11] On complete gradient shrinking Ricci solitons, J. Differential Geom. 85 (2010) 175
, ,[12] Structure at infinity of expanding gradient Ricci soliton, Asian J. Math. 19 (2015) 933 | DOI
, ,[13] A note on Kähler–Ricci soliton, Int. Math. Res. Not. 2009 (2009) 3328 | DOI
, , ,[14] The Ricci flow : an introduction, 110, Amer. Math. Soc. (2004) | DOI
, ,[15] Uniqueness of asymptotic cones of complete noncompact shrinking gradient Ricci solitons with Ricci curvature decay, C. R. Math. Acad. Sci. Paris 353 (2015) 1007 | DOI
, ,[16] Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons, C. R. Math. Acad. Sci. Paris 349 (2011) 1265 | DOI
, , ,[17] Examples of asymptotically conical Ricci-flat Kähler manifolds, Math. Z. 267 (2011) 465 | DOI
,[18] K–semistability for irregular Sasakian manifolds, J. Differential Geom. 109 (2018) 81 | DOI
, ,[19] Expanding Kähler–Ricci solitons coming out of Kähler cones, J. Differential Geom. 115 (2020) 303 | DOI
, ,[20] Asymptotically conical Calabi–Yau manifolds, I, Duke Math. J. 162 (2013) 2855 | DOI
, ,[21] Asymptotically conical Calabi–Yau metrics on quasi-projective varieties, Geom. Funct. Anal. 25 (2015) 517 | DOI
, ,[22] Comparison geometry for Ricci curvature, online book (2008)
, ,[23] On Ricci solitons of cohomogeneity one, Ann. Global Anal. Geom. 39 (2011) 259 | DOI
, ,[24] Complex analytic and differential geometry, online book (2012)
,[25] Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. 159 (2004) 1247 | DOI
, ,[26] Smoothing out positively curved metric cones by Ricci expanders, Geom. Funct. Anal. 26 (2016) 188 | DOI
,[27] Asymptotic estimates and compactness of expanding gradient Ricci solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci. 17 (2017) 485 | DOI
,[28] On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259 | DOI
, ,[29] Two generalizations of Cheeger–Gromoll splitting theorem via Bakry–Emery Ricci curvature, Ann. Inst. Fourier (Grenoble) 59 (2009) 563 | DOI
, , ,[30] Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, J. Differential Geom. 65 (2003) 169
, , ,[31] Fixed points and torsion on Kähler manifolds, Ann. of Math. 70 (1959) 1 | DOI
,[32] Kähler–Einstein metrics and integral invariants, 1314, Springer (1988) | DOI
,[33] The weighted Laplacians on real and complex metric measure spaces, from: "Geometry and analysis on manifolds" (editors T Ochiai, T Mabuchi, Y Maeda, J Noguchi, A Weinstein), Progr. Math. 308, Springer (2015) 343 | DOI
,[34] Constructing Kähler–Ricci solitons from Sasaki–Einstein manifolds, Asian J. Math. 15 (2011) 33 | DOI
, ,[35] On a class of transformation groups, Amer. J. Math. 79 (1957) 631 | DOI
, ,[36] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962) 331 | DOI
,[37] Frankel conjecture and Sasaki geometry, Adv. Math. 291 (2016) 912 | DOI
, ,[38] Introduction to singularities, Springer (2014) | DOI
,[39] On some types of topological groups, Ann. of Math. 50 (1949) 507 | DOI
,[40] Transformation groups in differential geometry, 70, Springer (1972) | DOI
,[41] Lectures on resolution of singularities, 166, Princeton Univ. Press (2007)
,[42] Kählerity of shrinking gradient Ricci solitons asymptotic to Kähler cones, J. Geom. Anal. 28 (2018) 2609 | DOI
,[43] Rigidity of asymptotically conical shrinking gradient Ricci solitons, J. Differential Geom. 100 (2015) 55
, ,[44] Isometries of asymptotically conical shrinking Ricci solitons, preprint (2019)
, ,[45] Normal two-dimensional singularities, 71, Princeton Univ. Press (1971)
,[46] Positivity in algebraic geometry, I : Classical setting : line bundles and linear series, 48, Springer (2004) | DOI
,[47] On rotationally symmetric Kähler–Ricci solitons, preprint (2010)
,[48] A smörgåsbord of scalar-flat Kähler ALE surfaces, J. Reine Angew. Math. 746 (2019) 171 | DOI
, ,[49] Sasaki–Einstein manifolds and volume minimisation, Comm. Math. Phys. 280 (2008) 611 | DOI
, , ,[50] Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne, Nagoya Math. J. 11 (1957) 145
,[51] Holomorphic functions on Kähler–Ricci solitons, J. Lond. Math. Soc. 89 (2014) 817 | DOI
, ,[52] Topology of Kähler Ricci solitons, J. Differential Geom. 100 (2015) 109
, ,[53] Conical structure for shrinking Ricci solitons, J. Eur. Math. Soc. 19 (2017) 3377 | DOI
, ,[54] Structure at infinity for shrinking Ricci solitons, Ann. Sci. Éc. Norm. Supér. 52 (2019) 891 | DOI
, ,[55] Vanishing theorems on complete Kähler manifolds, Publ. Res. Inst. Math. Sci. 20 (1984) 21 | DOI
,[56] Isolated singularities of algebraic surfaces with C∗ action, Ann. of Math. 93 (1971) 205 | DOI
, ,[57] A global formulation of the Lie theory of transformation groups, 22, Amer. Math. Soc. (1957)
,[58] Remarks on noncompact gradient Ricci solitons, Math. Z. 268 (2011) 777 | DOI
, , ,[59] Normal surface singularities with C∗ action, Math. Ann. 227 (1977) 183 | DOI
,[60] Duistermaat–Heckman measures in a noncompact setting, Compositio Math. 94 (1994) 113
, ,[61] Vector fields on analytic spaces, Ann. of Math. 78 (1963) 455 | DOI
,[62] Ricci flows of Ricci flat cones, PhD thesis, ETH Zürich (2013)
,[63] Uniqueness of Kähler–Ricci solitons, Acta Math. 184 (2000) 271 | DOI
, ,[64] A new holomorphic invariant and uniqueness of Kähler–Ricci solitons, Comment. Math. Helv. 77 (2002) 297 | DOI
, ,[65] An integration formula for the square of moment maps of circle actions, Lett. Math. Phys. 29 (1993) 311 | DOI
,[66] On the instanton complex of holomorphic Morse theory, Comm. Anal. Geom. 11 (2003) 775 | DOI
,[67] Complete shrinking Ricci solitons have finite fundamental group, Proc. Amer. Math. Soc. 136 (2008) 1803 | DOI
,[68] A characterization of noncompact Koiso-type solitons, Internat. J. Math. 23 (2012) 1250054, 13 | DOI
,[69] On the completeness of gradient Ricci solitons, Proc. Amer. Math. Soc. 137 (2009) 2755 | DOI
,Cité par Sources :