Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the structure of Gromov–Hausdorff limits of sequences of Riemannian manifolds whose Ricci curvature satisfies a uniform Kato bound. We first obtain Mosco convergence of the Dirichlet energies to the Cheeger energy, and show that tangent cones of such limits satisfy the condition. Under a noncollapsing assumption, we introduce a new family of monotone quantities, which allows us to prove that tangent cones are also metric cones. We then show the existence of a well-defined stratification in terms of splittings of tangent cones. We finally prove volume convergence to the Hausdorff –measure.
Carron, Gilles 1 ; Mondello, Ilaria 2 ; Tewodrose, David 3
@article{GT_2024_28_6_a2, author = {Carron, Gilles and Mondello, Ilaria and Tewodrose, David}, title = {Limits of manifolds with a {Kato} bound on the {Ricci} curvature}, journal = {Geometry & topology}, pages = {2635--2745}, publisher = {mathdoc}, volume = {28}, number = {6}, year = {2024}, doi = {10.2140/gt.2024.28.2635}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2635/} }
TY - JOUR AU - Carron, Gilles AU - Mondello, Ilaria AU - Tewodrose, David TI - Limits of manifolds with a Kato bound on the Ricci curvature JO - Geometry & topology PY - 2024 SP - 2635 EP - 2745 VL - 28 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2635/ DO - 10.2140/gt.2024.28.2635 ID - GT_2024_28_6_a2 ER -
%0 Journal Article %A Carron, Gilles %A Mondello, Ilaria %A Tewodrose, David %T Limits of manifolds with a Kato bound on the Ricci curvature %J Geometry & topology %D 2024 %P 2635-2745 %V 28 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2635/ %R 10.2140/gt.2024.28.2635 %F GT_2024_28_6_a2
Carron, Gilles; Mondello, Ilaria; Tewodrose, David. Limits of manifolds with a Kato bound on the Ricci curvature. Geometry & topology, Tome 28 (2024) no. 6, pp. 2635-2745. doi : 10.2140/gt.2024.28.2635. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2635/
[1] Yamabe metrics of positive scalar curvature and conformally flat manifolds, Differential Geom. Appl. 4 (1994) 239 | DOI
,[2] A∞–weights and compactness of conformal metrics under Ln∕2 curvature bounds, Anal. PDE 14 (2021) 2163 | DOI
, , ,[3] Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J. 163 (2014) 1405 | DOI
, , ,[4] Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab. 43 (2015) 339 | DOI
, , ,[5] Riesz transform on manifolds and Poincaré inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci. 4 (2005) 531
, ,[6] Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal. 259 (2010) 28 | DOI
, ,[7] A logarithmic Sobolev form of the Li–Yau parabolic inequality, Rev. Mat. Iberoam. 22 (2006) 683 | DOI
, ,[8] Structure theory of singular spaces, J. Funct. Anal. 272 (2017) 2504 | DOI
,[9] Convergence of Ricci flows with bounded scalar curvature, Ann. of Math. 188 (2018) 753 | DOI
,[10] Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature, Adv. Math. 319 (2017) 396 | DOI
, ,[11] Dirichlet spaces, Proc. Nat. Acad. Sci. U.S.A. 45 (1959) 208 | DOI
, ,[12] Convergence of probability measures, Wiley (1999) | DOI
,[13] Rectifiability of RCD(K,N) spaces via δ–splitting maps, Ann. Fenn. Math. 46 (2021) 465 | DOI
, , ,[14] Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian flows, Comm. Pure Appl. Math. 73 (2020) 1141 | DOI
, ,[15] A course in metric geometry, 33, Amer. Math. Soc. (2001) | DOI
, , ,[16] Inégalités isopérimétriques de Faber–Krahn et conséquences, from: "Actes de la Table Ronde de Géométrie Différentielle" (editor A L Besse), Sémin. Congr. 1, Soc. Math. France (1996) 205
,[17] Geometric inequalities for manifolds with Ricci curvature in the Kato class, Ann. Inst. Fourier (Grenoble) 69 (2019) 3095
,[18] Limits of manifolds with a Kato bound on the Ricci curvature, II, preprint (2022)
, , ,[19] Geometric and spectral estimates based on spectral Ricci curvature assumptions, J. Reine Angew. Math. 772 (2021) 121 | DOI
, ,[20] A rigidity result for metric measure spaces with Euclidean heat kernel, J. Éc. polytech. Math. 9 (2022) 101 | DOI
, ,[21] Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999) 428 | DOI
,[22] Degeneration of Riemannian metrics under Ricci curvature bounds, Scuola Normale Superiore (2001)
,[23] Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. 144 (1996) 189 | DOI
, ,[24] On the structure of spaces with Ricci curvature bounded below, I, J. Differential Geom. 46 (1997) 406
, ,[25] On the structure of spaces with Ricci curvature bounded below, II, J. Differential Geom. 54 (2000) 13
, ,[26] On the structure of spaces with Ricci curvature bounded below, III, J. Differential Geom. 54 (2000) 37
, ,[27] Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below, Ann. of Math. 193 (2021) 407 | DOI
, , ,[28] Lower bounds on Ricci curvature and quantitative behavior of singular sets, Invent. Math. 191 (2013) 321 | DOI
, ,[29] Regularity of Einstein manifolds and the codimension 4 conjecture, Ann. of Math. 182 (2015) 1093 | DOI
, ,[30] Segment inequality and almost rigidity structures for integral Ricci curvature, Int. Math. Res. Not. 2022 (2022) 11732 | DOI
,[31] Ricci curvature and volume convergence, Ann. of Math. 145 (1997) 477 | DOI
,[32] Liouville theorems for harmonic sections and applications, Comm. Pure Appl. Math. 51 (1998) 113 | DOI
, ,[33] Itération de Moser et estimation gaussienne du noyau de la chaleur, J. Operator Theory 29 (1993) 157
,[34] On-diagonal lower bounds for heat kernels and Markov chains, Duke Math. J. 89 (1997) 133 | DOI
, ,[35] Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoam. 9 (1993) 293 | DOI
, ,[36] Local Sobolev constant estimate for integral Ricci curvature bounds, Adv. Math. 325 (2018) 1 | DOI
, , ,[37] From volume cone to metric cone in the nonsmooth setting, Geom. Funct. Anal. 26 (2016) 1526 | DOI
, ,[38] Non-collapsed spaces with Ricci curvature bounded from below, J. Éc. polytech. Math. 5 (2018) 613 | DOI
, ,[39] Small time asymptotics of diffusion processes, J. Evol. Equ. 7 (2007) 79 | DOI
, , ,[40] On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math. 201 (2015) 993 | DOI
, , ,[41] Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math. 87 (1987) 517 | DOI
,[42] Dirichlet forms and symmetric Markov processes, 19, de Gruyter (1994) | DOI
, , ,[43] Volumes, courbure de Ricci et convergence des variétés (d’après T H Colding et Cheeger–Colding), from: "Séminaire Bourbaki, 1997/98", Astérisque 252, Soc. Math. France (1998)
,[44] Multiple integrals in the calculus of variations and nonlinear elliptic systems, 105, Princeton Univ. Press (1983)
,[45] The splitting theorem in non-smooth context, preprint (2013)
,[46] An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature, Anal. Geom. Metr. Spaces 2 (2014) 169 | DOI
,[47] On the differential structure of metric measure spaces and applications, 1113, Amer. Math. Soc. (2015) | DOI
,[48] The heat equation on noncompact Riemannian manifolds, Mat. Sb. 182 (1991) 55
,[49] Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoam. 10 (1994) 395 | DOI
,[50] Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. 36 (1999) 135 | DOI
,[51] Heat kernels on metric measure spaces with regular volume growth, from: "Handbook of geometric analysis, II" (editors L Ji, P Li, R Schoen, L Simon), Adv. Lect. Math. 13, International (2010) 1
,[52] Heat kernels on metric measure spaces and an application to semilinear elliptic equations, Trans. Amer. Math. Soc. 355 (2003) 2065 | DOI
, , ,[53] Two-sided estimates of heat kernels on metric measure spaces, Ann. Probab. 40 (2012) 1212 | DOI
, ,[54] Metric structures for Riemannian and non-Riemannian spaces, 152, Birkhäuser (1999) | DOI
,[55] Covariant Schrödinger semigroups on Riemannian manifolds, 264, Birkhäuser (2017) | DOI
,[56] Sobolev spaces on Riemannian manifolds, 1635, Springer (1996) | DOI
,[57] On the relation between elliptic and parabolic Harnack inequalities, Ann. Inst. Fourier (Grenoble) 51 (2001) 1437 | DOI
, ,[58] Sobolev spaces on metric measure spaces: an approach based on upper gradients, 27, Cambridge Univ. Press (2015) | DOI
, , , ,[59] Kato’s inequality and the spectral distribution of Laplacians on compact Riemannian manifolds, J. Differential Geom. 15 (1980) 27
, , ,[60] Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990) 285
,[61] L2 curvature bounds on manifolds with bounded Ricci curvature, Ann. of Math. 193 (2021) 107 | DOI
, ,[62] Convergence of metric measure spaces and energy forms, from: "Selected papers on differential equations and analysis", Amer. Math. Soc. Transl. (2) 215, Amer. Math. Soc. (2005) 79 | DOI
,[63] The Poincaré inequality is an open ended condition, Ann. of Math. 167 (2008) 575 | DOI
, ,[64] Stability of metric measure spaces with integral Ricci curvature bounds, J. Funct. Anal. 281 (2021) 109142 | DOI
,[65] Geometry and analysis of Dirichlet forms, II, J. Funct. Anal. 267 (2014) 2437 | DOI
, , ,[66] Geometry and analysis of Dirichlet forms, Adv. Math. 231 (2012) 2755 | DOI
, ,[67] Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry, Comm. Anal. Geom. 11 (2003) 599 | DOI
, ,[68] Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009) 903 | DOI
, ,[69] Geometry of sets and measures in Euclidean spaces : fractals and rectifiability, 44, Cambridge Univ. Press (1995) | DOI
,[70] Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc. 21 (2019) 1809 | DOI
, ,[71] Composite media and asymptotic Dirichlet forms, J. Funct. Anal. 123 (1994) 368 | DOI
,[72] Relative volume comparison with integral curvature bounds, Geom. Funct. Anal. 7 (1997) 1031 | DOI
, ,[73] Analysis and geometry on manifolds with integral Ricci curvature bounds, II, Trans. Amer. Math. Soc. 353 (2001) 457 | DOI
, ,[74] Short-time asymptotics in Dirichlet spaces, Comm. Pure Appl. Math. 54 (2001) 259 | DOI
,[75] Li–Yau gradient estimate for compact manifolds with negative part of Ricci curvature in the Kato class, Ann. Global Anal. Geom. 55 (2019) 443 | DOI
,[76] The Kato class on compact manifolds with integral bounds on the negative part of Ricci curvature, Proc. Amer. Math. Soc. 145 (2017) 2199 | DOI
, ,[77] A note on Poincaré, Sobolev, and Harnack inequalities, Int. Math. Res. Not. 1992 (1992) 27 | DOI
,[78] Aspects of Sobolev-type inequalities, 289, Cambridge Univ. Press (2002) | DOI
,[79] Sharp pointwise estimates on heat kernels, Q. J. Math. 47 (1996) 371 | DOI
,[80] Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982) 447 | DOI
,[81] Lectures on geometric measure theory, 3, Austral. Nat. Univ. (1983)
,[82] Extending four dimensional Ricci flows with bounded scalar curvature, Comm. Anal. Geom. 28 (2020) 1683 | DOI
,[83] Some integral curvature estimates for the Ricci flow in four dimensions, Comm. Anal. Geom. 28 (2020) 707 | DOI
,[84] Analysis on local Dirichlet spaces, I : Recurrence, conservativeness and Lp–Liouville properties, J. Reine Angew. Math. 456 (1994) 173 | DOI
,[85] Analysis on local Dirichlet spaces, III : The parabolic Harnack inequality, J. Math. Pures Appl. 75 (1996) 273
,[86] On the geometry of metric measure spaces, I, Acta Math. 196 (2006) 65 | DOI
,[87] On the geometry of metric measure spaces, II, Acta Math. 196 (2006) 133 | DOI
,[88] Volume of spheres in doubling metric measured spaces and in groups of polynomial growth, Bull. Soc. Math. France 135 (2007) 47 | DOI
,[89] Bach-flat asymptotically locally Euclidean metrics, Invent. Math. 160 (2005) 357 | DOI
, ,[90] Moduli spaces of critical Riemannian metrics in dimension four, Adv. Math. 196 (2005) 346 | DOI
, ,[91] Volume growth, curvature decay, and critical metrics, Comment. Math. Helv. 83 (2008) 889 | DOI
, ,[92] Regularity of Kähler–Ricci flows on Fano manifolds, Acta Math. 216 (2016) 127 | DOI
, ,[93] Hardy–Littlewood theory for semigroups, J. Funct. Anal. 63 (1985) 240 | DOI
,[94] Optimal transport: old and new, 338, Springer (2009) | DOI
,[95] On the perturbation theory for strongly continuous semigroups, Math. Ann. 229 (1977) 163 | DOI
,[96] Stratification of minimal surfaces, mean curvature flows, and harmonic maps, J. Reine Angew. Math. 488 (1997) 1 | DOI
,[97] Li–Yau gradient bounds on compact manifolds under nearly optimal curvature conditions, J. Funct. Anal. 275 (2018) 478 | DOI
, ,Cité par Sources :