Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define a theory of descendent integration on the moduli spaces of stable pointed disks. The descendent integrals are proved to be coefficients of the –function of an open KdV hierarchy. A relation between the integrals and a representation of half the Virasoro algebra is also proved. The construction of the theory requires an in-depth study of homotopy classes of multivalued boundary conditions. Geometric recursions based on the combined structure of the boundary conditions and the moduli space are used to compute the integrals. We also provide a detailed analysis of orientations.
Our open KdV and Virasoro constraints uniquely specify a theory of higher-genus open descendent integrals. As a result, we obtain an open analog (governing all genera) of Witten’s conjectures concerning descendent integrals on the Deligne–Mumford space of stable curves.
Pandharipande, Rahul 1 ; Solomon, Jake P 2 ; Tessler, Ran J 3
@article{GT_2024_28_6_a0, author = {Pandharipande, Rahul and Solomon, Jake P and Tessler, Ran J}, title = {Intersection theory on moduli of disks, open {KdV} and {Virasoro}}, journal = {Geometry & topology}, pages = {2483--2567}, publisher = {mathdoc}, volume = {28}, number = {6}, year = {2024}, doi = {10.2140/gt.2024.28.2483}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2483/} }
TY - JOUR AU - Pandharipande, Rahul AU - Solomon, Jake P AU - Tessler, Ran J TI - Intersection theory on moduli of disks, open KdV and Virasoro JO - Geometry & topology PY - 2024 SP - 2483 EP - 2567 VL - 28 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2483/ DO - 10.2140/gt.2024.28.2483 ID - GT_2024_28_6_a0 ER -
%0 Journal Article %A Pandharipande, Rahul %A Solomon, Jake P %A Tessler, Ran J %T Intersection theory on moduli of disks, open KdV and Virasoro %J Geometry & topology %D 2024 %P 2483-2567 %V 28 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2483/ %R 10.2140/gt.2024.28.2483 %F GT_2024_28_6_a0
Pandharipande, Rahul; Solomon, Jake P; Tessler, Ran J. Intersection theory on moduli of disks, open KdV and Virasoro. Geometry & topology, Tome 28 (2024) no. 6, pp. 2483-2567. doi : 10.2140/gt.2024.28.2483. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2483/
[1] Riemann surfaces, 26, Princeton Univ. Press (1960) | DOI
, ,[2] Refined open intersection numbers and the Kontsevich–Penner matrix model, J. High Energy Phys. 2017 (2017) 123 | DOI
, , ,[3] Open WDVV equations and Virasoro constraints, Arnold Math. J. 5 (2019) 145 | DOI
, ,[4] Equivalence of the open KdV and the open Virasoro equations for the moduli space of Riemann surfaces with boundary, Lett. Math. Phys. 105 (2015) 1427 | DOI
,[5] Open r–spin theory, II : The analogue of Witten’s conjecture for r–spin disks, (2018)
, , ,[6] Open r–spin theory, I : Foundations, Int. Math. Res. Not. 2022 (2022) 10458 | DOI
, , ,[7] Matrix models and a proof of the open analog of Witten’s conjecture, Comm. Math. Phys. 353 (2017) 1299 | DOI
, ,[8] Open CP1 descendent theory, I : The stationary sector, Adv. Math. 401 (2022) 108249 | DOI
, , , ,[9] Steenrod pseudocycles, lifted cobordisms, and Solomon’s relations for Welschinger invariants, Geom. Funct. Anal. 32 (2022) 490 | DOI
,[10] WDVV-type relations for disk Gromov–Witten invariants in dimension 6, Math. Ann. 379 (2021) 1231 | DOI
, ,[11] Counting real J–holomorphic discs and spheres in dimension four and six, J. Korean Math. Soc. 45 (2008) 1427 | DOI
,[12] Equivariant moduli problems, branched manifolds, and the Euler class, Topology 42 (2003) 641 | DOI
, , ,[13] The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969) 75 | DOI
, ,[14] Developments in topological gravity, Int. J. Modern Phys. A 33 (2018) 1830029 | DOI
, ,[15] Symplectic field theory and its applications, from: "International Congress of Mathematicians, I" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc. (2007) 217
,[16] Introduction to symplectic field theory, Geom. Funct. Anal. GAFA 2000 special volume (2000) 560 | DOI
, , ,[17] Gravitational descendants in symplectic field theory, Comm. Math. Phys. 302 (2011) 113 | DOI
,[18] String, dilaton, and divisor equation in symplectic field theory, Int. Math. Res. Not. 2011 (2011) 4384 | DOI
, ,[19] Topological recursion relations in non-equivariant cylindrical contact homology, J. Symplectic Geom. 11 (2013) 405 | DOI
, ,[20] Lagrangian intersection Floer theory : anomaly and obstruction, I, 46.1, Amer. Math. Soc. (2009) | DOI
, , , ,[21] Lagrangian intersection Floer theory : anomaly and obstruction, II, 46.2, Amer. Math. Soc. (2009) | DOI
, , , ,[22] Open Gromov–Witten disk invariants in the presence of an anti-symplectic involution, Adv. Math. 301 (2016) 116 | DOI
,[23] Virasoro constraints and the Chern classes of the Hodge bundle, Nuclear Phys. B 530 (1998) 701 | DOI
, ,[24] Descendent open Gromov–Witten invariants, in preparation
, ,[25] Moduli of curves, 187, Springer (1998) | DOI
, ,[26] Differential topology, 33, Springer (1976) | DOI
,[27] Inductive extension of multisections, in preparation
, ,[28] Polyfold and Fredholm theory, 72, Springer (2021) | DOI
, , ,[29] The open Gromov–Witten–Welschinger theory of blowups of the projective plane, preprint (2012)
, ,[30] On manifolds with corners, from: "Advances in geometric analysis" (editors S Janeczko, J Li, D H Phong), Adv. Lect. Math. 21, International (2012) 225
,[31] Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1 | DOI
,[32] Moduli of J–holomorphic curves with Lagrangian boundary conditions and open Gromov–Witten invariants for an S1–equivariant pair, J. Iran. Math. Soc. 1 (2020) 5 | DOI
,[33] Weil–Petersson volumes and intersection theory on the moduli space of curves, J. Amer. Math. Soc. 20 (2007) 1 | DOI
,[34] Gromov–Witten theory, Hurwitz numbers, and matrix models, from: "Algebraic geometry, I" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 325 | DOI
, ,[35] Theorie der Abel’schen Functionen, J. Reine Angew. Math. 54 (1857) 115 | DOI
,[36] Fukaya categories and Picard–Lefschetz theory, Eur. Math. Soc. (2008) | DOI
,[37] Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions, PhD thesis, Massachusetts Institute of Technology (2006)
,[38] A differential equation for the open Gromov–Witten potential, preprint (2007)
,[39] Intersection theory on the moduli space of graded Riemann surfaces with boundary, in preparation
, ,[40] Point-like bounding chains in open Gromov–Witten theory, Geom. Funct. Anal. 31 (2021) 1245 | DOI
, ,[41] Relative quantum cohomology, J. Eur. Math. Soc. (JEMS) 26 (2024) 3497 | DOI
, ,[42] The combinatorial formula for open gravitational descendents, Geom. Topol. 27 (2023) 2497 | DOI
,[43] Invariants of real symplectic 4–manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005) 195 | DOI
,[44] Topological sigma models, Comm. Math. Phys. 118 (1988) 411 | DOI
,[45] Two-dimensional gravity and intersection theory on moduli space, from: "Surveys in differential geometry" (editors H B Lawson Jr., S T Yau), Lehigh Univ. (1991) 243 | DOI
,[46] Algebraic geometry associated with matrix models of two-dimensional gravity, from: "Topological methods in modern mathematics" (editors L R Goldberg, A V Phillips), Publish or Perish (1993) 235
,[47] Equivariant open Gromov–Witten theory of RP2m↪CP2m, preprint (2017)
,[48] Fixed-point localization for RP2m ⊂ CP2m, preprint (2017)
,[49] Moduli of open stable maps to a homogeneous space, preprint (2017)
,Cité par Sources :