Embedding surfaces in 4–manifolds
Geometry & topology, Tome 28 (2024) no. 5, pp. 2399-2482.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a surface embedding theorem for 4–manifolds with good fundamental group in the presence of dual spheres, with no restriction on the normal bundles. The new obstruction is a Kervaire–Milnor invariant for surfaces and we give a combinatorial formula for its computation. For this we introduce the notion of band characteristic surfaces.

DOI : 10.2140/gt.2024.28.2399
Keywords: embedding surfaces in 4–manifolds, Kervaire–Milnor invariant

Kasprowski, Daniel 1 ; Powell, Mark 2 ; Ray, Arunima 3 ; Teichner, Peter 3

1 School of Mathematical Sciences, University of Southampton, Southampton, United Kingdom
2 School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
3 Max Planck Institute for Mathematics, Bonn, Germany
@article{GT_2024_28_5_a7,
     author = {Kasprowski, Daniel and Powell, Mark and Ray, Arunima and Teichner, Peter},
     title = {Embedding surfaces in 4{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {2399--2482},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2024},
     doi = {10.2140/gt.2024.28.2399},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2399/}
}
TY  - JOUR
AU  - Kasprowski, Daniel
AU  - Powell, Mark
AU  - Ray, Arunima
AU  - Teichner, Peter
TI  - Embedding surfaces in 4–manifolds
JO  - Geometry & topology
PY  - 2024
SP  - 2399
EP  - 2482
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2399/
DO  - 10.2140/gt.2024.28.2399
ID  - GT_2024_28_5_a7
ER  - 
%0 Journal Article
%A Kasprowski, Daniel
%A Powell, Mark
%A Ray, Arunima
%A Teichner, Peter
%T Embedding surfaces in 4–manifolds
%J Geometry & topology
%D 2024
%P 2399-2482
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2399/
%R 10.2140/gt.2024.28.2399
%F GT_2024_28_5_a7
Kasprowski, Daniel; Powell, Mark; Ray, Arunima; Teichner, Peter. Embedding surfaces in 4–manifolds. Geometry & topology, Tome 28 (2024) no. 5, pp. 2399-2482. doi : 10.2140/gt.2024.28.2399. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2399/

[1] M Aït Nouh, Genera and degrees of torus knots in CP2, J. Knot Theory Ramifications 18 (2009) 1299 | DOI

[2] S Behrens, B Kalmár, M H Kim, M Powell, A Ray, editors, The disc embedding theorem, Oxford Univ. Press (2021) | DOI

[3] A J Casson, Three lectures on new-infinite constructions in 4–dimensional manifolds, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 201

[4] T D Cochran, A Ray, Shake slice and shake concordant knots, J. Topol. 9 (2016) 861 | DOI

[5] T D Cochran, K E Orr, P Teichner, Knot concordance, Whitney towers and L2–signatures, Ann. of Math. 157 (2003) 433 | DOI

[6] J Conant, R Schneiderman, P Teichner, Universal quadratic forms and Whitney tower intersection invariants, from: "Proceedings of the Freedman Fest" (editors R Kirby, V Krushkal, Z Wang), Geom. Topol. Monogr. 18, Geom. Topol. Publ. (2012) 35 | DOI

[7] J Conant, R Schneiderman, P Teichner, Whitney tower concordance of classical links, Geom. Topol. 16 (2012) 1419 | DOI

[8] J Conant, R Schneiderman, P Teichner, Milnor invariants and twisted Whitney towers, J. Topol. 7 (2014) 187 | DOI

[9] R Connelly, A new proof of Brown’s collaring theorem, Proc. Amer. Math. Soc. 27 (1971) 180 | DOI

[10] P Feller, A N Miller, M Nagel, P Orson, M Powell, A Ray, Embedding spheres in knot traces, Compos. Math. 157 (2021) 2242 | DOI

[11] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357

[12] M Freedman, R Kirby, A geometric proof of Rochlin’s theorem, from: "Algebraic and geometric topology, II" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 85

[13] M H Freedman, F Quinn, Topology of 4–manifolds, 39, Princeton Univ. Press (1990)

[14] P M Gilmer, Configurations of surfaces in 4–manifolds, Trans. Amer. Math. Soc. 264 (1981) 353 | DOI

[15] M Golubitsky, V Guillemin, Stable mappings and their singularities, 14, Springer (1973) | DOI

[16] L Guillou, A Marin, Une extension d’un théorème de Rohlin sur la signature, from: "Seminar on real algebraic geometry" (editor J J Risler), Publ. Math. Univ. Paris VII 9, Univ. Paris VII (1980) 69

[17] I Hambleton, M Kreck, Cancellation of hyperbolic forms and topological four-manifolds, J. Reine Angew. Math. 443 (1993) 21 | DOI

[18] M W Hirsch, Differential topology, 33, Springer (1976) | DOI

[19] D Kasprowski, M Land, M Powell, P Teichner, Stable classification of 4–manifolds with 3–manifold fundamental groups, J. Topol. 10 (2017) 827 | DOI

[20] D Kasprowski, M Powell, P Teichner, Algebraic criteria for stable diffeomorphism of spin 4–manifolds, preprint (2020)

[21] D Kasprowski, P Lambert-Cole, M Land, A G Lecuona, Topologically flat embedded 2–spheres in specific simply connected 4–manifolds, from: "2019–20 MATRIX annals" (editors D R Wood, J de Gier, C E Praeger, T Tao), MATRIX Book Ser. 4, Springer (2021) 111 | DOI

[22] D Kasprowski, M Powell, P Teichner, The Kervaire–Milnor invariant in the stable classification of spin 4–manifolds, preprint (2021)

[23] M H Kim, P Orson, J Park, A Ray, Good groups, from: "The disc embedding theorem" (editors S Behrens, B Kalmár, M H Kim, M Powell, A Ray), Oxford Univ. Press (2021) 273 | DOI

[24] R C Kirby, L R Taylor, A survey of 4–manifolds through the eyes of surgery, from: "Surveys on surgery theory, II" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 149, Princeton Univ. Press (2001) 387 | DOI

[25] V S Krushkal, F Quinn, Subexponential groups in 4–manifold topology, Geom. Topol. 4 (2000) 407 | DOI

[26] R Lee, D M Wilczyński, Locally flat 2–spheres in simply connected 4–manifolds, Comment. Math. Helv. 65 (1990) 388 | DOI

[27] R Lee, D M Wilczyński, Representing homology classes by locally flat surfaces of minimum genus, Amer. J. Math. 119 (1997) 1119 | DOI

[28] P Lisca, G Matić, Stein 4–manifolds with boundary and contact structures, Topology Appl. 88 (1998) 55 | DOI

[29] C Manolescu, M Marengon, L Piccirillo, Relative genus bounds in indefinite four-manifolds, Math. Ann. (2024) | DOI

[30] M Marengon, A N Miller, A Ray, A I Stipsicz, A note on surfaces in CP2 and CP2 # CP2, Proc. Amer. Math. Soc. Ser. B 11 (2024) 187 | DOI

[31] W S Massey, Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969) 143 | DOI

[32] Y Matsumoto, Secondary intersectional properties of 4–manifolds and Whitney’s trick, from: "Algebraic and geometric topology, II" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 99

[33] Y Matsumoto, An elementary proof of Rochlin’s signature theorem and its extension by Guillou and Marin, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 119 | DOI

[34] R A Norman, Dehn’s lemma for certain 4–manifolds, Invent. Math. 7 (1969) 143 | DOI

[35] J Pichelmeyer, Genera of knots in the complex projective plane, J. Knot Theory Ramifications 29 (2020) 2050081 | DOI

[36] M Powell, A Ray, Basic geometric constructions, from: "The disc embedding theorem" (editors S Behrens, B Kalmár, M H Kim, M Powell, A Ray), Oxford Univ. Press (2021) 217 | DOI

[37] M Powell, A Ray, Intersection numbers and the statement of the disc embedding theorem, from: "The disc embedding theorem" (editors S Behrens, B Kalmár, M H Kim, M Powell, A Ray), Oxford Univ. Press (2021) 155 | DOI

[38] M Powell, A Ray, P Teichner, The 4–dimensional disc embedding theorem and dual spheres, preprint (2020)

[39] F Quinn, Ends of maps, III : Dimensions 4 and 5, J. Differential Geom. 17 (1982) 503

[40] V A Rokhlin, New results in the theory of four-dimensional manifolds, Doklady Akad. Nauk SSSR 84 (1952) 221

[41] V A Rokhlin, Proof of Gudkov’s hypothesis, Funct. Anal. Appl. 6 (1972) 136 | DOI

[42] R Schneiderman, Algebraic linking numbers of knots in 3–manifolds, Algebr. Geom. Topol. 3 (2003) 921 | DOI

[43] R Stong, Existence of π1–negligible embeddings in 4–manifolds : a correction to Theorem 10.5 of FQ, Proc. Amer. Math. Soc. 120 (1994) 1309 | DOI

[44] A G Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969) 251 | DOI

[45] O Y Viro, Positioning in codimension 2, and the boundary, Uspehi Mat. Nauk 30 (1975) 231

[46] C T C Wall, Surgery on compact manifolds, 1, Academic (1970)

[47] A Yasuhara, (2,15)–torus knot is not slice in CP2, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991) 353

[48] A Yasuhara, On slice knots in the complex projective plane, Rev. Mat. Univ. Complut. Madrid 5 (1992) 255

Cité par Sources :