Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a surface embedding theorem for –manifolds with good fundamental group in the presence of dual spheres, with no restriction on the normal bundles. The new obstruction is a Kervaire–Milnor invariant for surfaces and we give a combinatorial formula for its computation. For this we introduce the notion of band characteristic surfaces.
Kasprowski, Daniel 1 ; Powell, Mark 2 ; Ray, Arunima 3 ; Teichner, Peter 3
@article{GT_2024_28_5_a7, author = {Kasprowski, Daniel and Powell, Mark and Ray, Arunima and Teichner, Peter}, title = {Embedding surfaces in 4{\textendash}manifolds}, journal = {Geometry & topology}, pages = {2399--2482}, publisher = {mathdoc}, volume = {28}, number = {5}, year = {2024}, doi = {10.2140/gt.2024.28.2399}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2399/} }
TY - JOUR AU - Kasprowski, Daniel AU - Powell, Mark AU - Ray, Arunima AU - Teichner, Peter TI - Embedding surfaces in 4–manifolds JO - Geometry & topology PY - 2024 SP - 2399 EP - 2482 VL - 28 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2399/ DO - 10.2140/gt.2024.28.2399 ID - GT_2024_28_5_a7 ER -
%0 Journal Article %A Kasprowski, Daniel %A Powell, Mark %A Ray, Arunima %A Teichner, Peter %T Embedding surfaces in 4–manifolds %J Geometry & topology %D 2024 %P 2399-2482 %V 28 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2399/ %R 10.2140/gt.2024.28.2399 %F GT_2024_28_5_a7
Kasprowski, Daniel; Powell, Mark; Ray, Arunima; Teichner, Peter. Embedding surfaces in 4–manifolds. Geometry & topology, Tome 28 (2024) no. 5, pp. 2399-2482. doi : 10.2140/gt.2024.28.2399. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2399/
[1] Genera and degrees of torus knots in CP2, J. Knot Theory Ramifications 18 (2009) 1299 | DOI
,[2] The disc embedding theorem, Oxford Univ. Press (2021) | DOI
, , , , , editors,[3] Three lectures on new-infinite constructions in 4–dimensional manifolds, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 201
,[4] Shake slice and shake concordant knots, J. Topol. 9 (2016) 861 | DOI
, ,[5] Knot concordance, Whitney towers and L2–signatures, Ann. of Math. 157 (2003) 433 | DOI
, , ,[6] Universal quadratic forms and Whitney tower intersection invariants, from: "Proceedings of the Freedman Fest" (editors R Kirby, V Krushkal, Z Wang), Geom. Topol. Monogr. 18, Geom. Topol. Publ. (2012) 35 | DOI
, , ,[7] Whitney tower concordance of classical links, Geom. Topol. 16 (2012) 1419 | DOI
, , ,[8] Milnor invariants and twisted Whitney towers, J. Topol. 7 (2014) 187 | DOI
, , ,[9] A new proof of Brown’s collaring theorem, Proc. Amer. Math. Soc. 27 (1971) 180 | DOI
,[10] Embedding spheres in knot traces, Compos. Math. 157 (2021) 2242 | DOI
, , , , , ,[11] The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357
,[12] A geometric proof of Rochlin’s theorem, from: "Algebraic and geometric topology, II" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 85
, ,[13] Topology of 4–manifolds, 39, Princeton Univ. Press (1990)
, ,[14] Configurations of surfaces in 4–manifolds, Trans. Amer. Math. Soc. 264 (1981) 353 | DOI
,[15] Stable mappings and their singularities, 14, Springer (1973) | DOI
, ,[16] Une extension d’un théorème de Rohlin sur la signature, from: "Seminar on real algebraic geometry" (editor J J Risler), Publ. Math. Univ. Paris VII 9, Univ. Paris VII (1980) 69
, ,[17] Cancellation of hyperbolic forms and topological four-manifolds, J. Reine Angew. Math. 443 (1993) 21 | DOI
, ,[18] Differential topology, 33, Springer (1976) | DOI
,[19] Stable classification of 4–manifolds with 3–manifold fundamental groups, J. Topol. 10 (2017) 827 | DOI
, , , ,[20] Algebraic criteria for stable diffeomorphism of spin 4–manifolds, preprint (2020)
, , ,[21] Topologically flat embedded 2–spheres in specific simply connected 4–manifolds, from: "2019–20 MATRIX annals" (editors D R Wood, J de Gier, C E Praeger, T Tao), MATRIX Book Ser. 4, Springer (2021) 111 | DOI
, , , ,[22] The Kervaire–Milnor invariant in the stable classification of spin 4–manifolds, preprint (2021)
, , ,[23] Good groups, from: "The disc embedding theorem" (editors S Behrens, B Kalmár, M H Kim, M Powell, A Ray), Oxford Univ. Press (2021) 273 | DOI
, , , ,[24] A survey of 4–manifolds through the eyes of surgery, from: "Surveys on surgery theory, II" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 149, Princeton Univ. Press (2001) 387 | DOI
, ,[25] Subexponential groups in 4–manifold topology, Geom. Topol. 4 (2000) 407 | DOI
, ,[26] Locally flat 2–spheres in simply connected 4–manifolds, Comment. Math. Helv. 65 (1990) 388 | DOI
, ,[27] Representing homology classes by locally flat surfaces of minimum genus, Amer. J. Math. 119 (1997) 1119 | DOI
, ,[28] Stein 4–manifolds with boundary and contact structures, Topology Appl. 88 (1998) 55 | DOI
, ,[29] Relative genus bounds in indefinite four-manifolds, Math. Ann. (2024) | DOI
, , ,[30] A note on surfaces in CP2 and CP2 # CP2, Proc. Amer. Math. Soc. Ser. B 11 (2024) 187 | DOI
, , , ,[31] Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969) 143 | DOI
,[32] Secondary intersectional properties of 4–manifolds and Whitney’s trick, from: "Algebraic and geometric topology, II" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 99
,[33] An elementary proof of Rochlin’s signature theorem and its extension by Guillou and Marin, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 119 | DOI
,[34] Dehn’s lemma for certain 4–manifolds, Invent. Math. 7 (1969) 143 | DOI
,[35] Genera of knots in the complex projective plane, J. Knot Theory Ramifications 29 (2020) 2050081 | DOI
,[36] Basic geometric constructions, from: "The disc embedding theorem" (editors S Behrens, B Kalmár, M H Kim, M Powell, A Ray), Oxford Univ. Press (2021) 217 | DOI
, ,[37] Intersection numbers and the statement of the disc embedding theorem, from: "The disc embedding theorem" (editors S Behrens, B Kalmár, M H Kim, M Powell, A Ray), Oxford Univ. Press (2021) 155 | DOI
, ,[38] The 4–dimensional disc embedding theorem and dual spheres, preprint (2020)
, , ,[39] Ends of maps, III : Dimensions 4 and 5, J. Differential Geom. 17 (1982) 503
,[40] New results in the theory of four-dimensional manifolds, Doklady Akad. Nauk SSSR 84 (1952) 221
,[41] Proof of Gudkov’s hypothesis, Funct. Anal. Appl. 6 (1972) 136 | DOI
,[42] Algebraic linking numbers of knots in 3–manifolds, Algebr. Geom. Topol. 3 (2003) 921 | DOI
,[43] Existence of π1–negligible embeddings in 4–manifolds : a correction to Theorem 10.5 of FQ, Proc. Amer. Math. Soc. 120 (1994) 1309 | DOI
,[44] Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969) 251 | DOI
,[45] Positioning in codimension 2, and the boundary, Uspehi Mat. Nauk 30 (1975) 231
,[46] Surgery on compact manifolds, 1, Academic (1970)
,[47] (2,15)–torus knot is not slice in CP2, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991) 353
,[48] On slice knots in the complex projective plane, Rev. Mat. Univ. Complut. Madrid 5 (1992) 255
,Cité par Sources :