Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that (topologically) rigid actions of surface groups on the circle by homeomorphisms are necessarily geometric, namely, they are semiconjugate to an embedding as a cocompact lattice in a Lie group acting transitively on . This gives the converse to a theorem of the first author; thus characterizing geometric actions as the unique isolated points in the “character space” of surface group actions on .
Mann, Kathryn 1 ; Wolff, Maxime 2
@article{GT_2024_28_5_a6, author = {Mann, Kathryn and Wolff, Maxime}, title = {Rigidity and geometricity for surface group actions on the circle}, journal = {Geometry & topology}, pages = {2345--2398}, publisher = {mathdoc}, volume = {28}, number = {5}, year = {2024}, doi = {10.2140/gt.2024.28.2345}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2345/} }
TY - JOUR AU - Mann, Kathryn AU - Wolff, Maxime TI - Rigidity and geometricity for surface group actions on the circle JO - Geometry & topology PY - 2024 SP - 2345 EP - 2398 VL - 28 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2345/ DO - 10.2140/gt.2024.28.2345 ID - GT_2024_28_5_a6 ER -
Mann, Kathryn; Wolff, Maxime. Rigidity and geometricity for surface group actions on the circle. Geometry & topology, Tome 28 (2024) no. 5, pp. 2345-2398. doi : 10.2140/gt.2024.28.2345. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2345/
[1] Orderings and flexibility of some subgroups of Homeo+(R), J. Lond. Math. Soc. 95 (2017) 919 | DOI
, , ,[2] Modeling of processes of cyclic evolution type: synchronization by a random signal, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. (1984) 67
,[3] On generalised free products, Math. Z. 78 (1962) 423 | DOI
,[4] Dense embeddings of surface groups, Geom. Topol. 10 (2006) 1373 | DOI
, , , ,[5] Higher Teichmüller spaces : from SL(2, R) to other Lie groups, from: "Handbook of Teichmüller theory, IV" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc. (2014) 539 | DOI
, , ,[6] Ziggurats and rotation numbers, J. Mod. Dyn. 5 (2011) 711 | DOI
, ,[7] Convergence groups and Seifert fibered 3–manifolds, Invent. Math. 118 (1994) 441 | DOI
, ,[8] Sur la dynamique unidimensionnelle en régularité intermédiaire, Acta Math. 199 (2007) 199 | DOI
, , ,[9] Transverse foliations of Seifert bundles and self-homeomorphism of the circle, Comment. Math. Helv. 56 (1981) 638 | DOI
, , ,[10] Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992) 447 | DOI
,[11] Classe d’Euler et minimal exceptionnel, Topology 26 (1987) 93 | DOI
,[12] Groupes d’homéomorphismes du cercle et cohomologie bornée, from: "The Lefschetz centennial conference, III" (editor A Verjovsky), Contemp. Math. 58, Amer. Math. Soc. (1987) 81 | DOI
,[13] Groups acting on the circle, Enseign. Math. 47 (2001) 329
,[14] The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984) 200 | DOI
,[15] Topological components of spaces of representations, Invent. Math. 93 (1988) 557 | DOI
,[16] Ergodicity of mapping class group actions on SU(2)–character varieties, from: "Geometry, rigidity, and group actions" (editors B Farb, D Fisher), Univ. Chicago Press (2011) 591 | DOI
, ,[17] On triangulations of surfaces, Topology Appl. 40 (1991) 189 | DOI
,[18] Deformation spaces associated to compact hyperbolic manifolds, from: "Discrete groups in geometry and analysis" (editor R Howe), Progr. Math. 67, Birkhäuser (1987) 48 | DOI
, ,[19] Introduction to the modern theory of dynamical systems, 54, Cambridge Univ. Press (1995) | DOI
, ,[20] Flexibility of group actions on the circle, 2231, Springer (2019) | DOI
, , ,[21] Sur certaines opérations différentiables des groupes de Lie, Amer. J. Math. 97 (1975) 172 | DOI
,[22] Fonctions différentiables invariantes sous l’opération d’un groupe réductif, Ann. Inst. Fourier (Grenoble) 26 (1976) 33 | DOI
,[23] Spaces of surface group representations, Invent. Math. 201 (2015) 669 | DOI
,[24] Rigidity and flexibility of group actions on the circle, from: "Handbook of group actions, IV", Adv. Lect. Math. 41, International (2018) 705
,[25] A characterization of Fuchsian actions by topological rigidity, Pacific J. Math. 302 (2019) 181 | DOI
, ,[26] The modular action on PSL2(R)–characters in genus 2, Duke Math. J. 165 (2016) 371 | DOI
, ,[27] Numerical invariants for semiconjugacy of homeomorphisms of the circle, Proc. Amer. Math. Soc. 98 (1986) 163 | DOI
,[28] Some remarks on foliated S1 bundles, Invent. Math. 90 (1987) 343 | DOI
,[29] Basic partitions and combinations of group actions on the circle : a new approach to a theorem of Kathryn Mann, Enseign. Math. 62 (2016) 15 | DOI
,[30] On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958) 215 | DOI
,[31] Groups of circle diffeomorphisms, Univ. Chicago Press (2011) | DOI
,[32] Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967) 747 | DOI
,[33] Quasiconformal homeomorphisms and dynamics, II : Structural stability implies hyperbolicity for Kleinian groups, Acta Math. 155 (1985) 243 | DOI
,[34] Earthquakes in two-dimensional hyperbolic geometry, from: "Low-dimensional topology and Kleinian groups" (editor D B A Epstein), Lond. Math. Soc. Lect. Note Ser. 112, Cambridge Univ. Press (1986) 91
,[35] Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988) 1 | DOI
,[36] Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971) 257 | DOI
,Cité par Sources :