Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We introduce a new real-valued invariant, called the natural slope of a hyperbolic knot in the –sphere, which is defined in terms of its cusp geometry. We show that twice the knot signature and the natural slope differ by at most a constant times the hyperbolic volume divided by the cube of the injectivity radius. This inequality was discovered using machine learning to detect relationships between various knot invariants. It has applications to Dehn surgery and to –ball genus. We also show a refined version of the inequality, where the upper bound is a linear function of the volume, and the slope is corrected by terms corresponding to short geodesics that link the knot an odd number of times.
Davies, Alex 1 ; Juhász, András 2 ; Lackenby, Marc 2 ; Tomašev, Nenad 1
@article{GT_2024_28_5_a5, author = {Davies, Alex and Juh\'asz, Andr\'as and Lackenby, Marc and Toma\v{s}ev, Nenad}, title = {The signature and cusp geometry of hyperbolic knots}, journal = {Geometry & topology}, pages = {2313--2343}, publisher = {mathdoc}, volume = {28}, number = {5}, year = {2024}, doi = {10.2140/gt.2024.28.2313}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2313/} }
TY - JOUR AU - Davies, Alex AU - Juhász, András AU - Lackenby, Marc AU - Tomašev, Nenad TI - The signature and cusp geometry of hyperbolic knots JO - Geometry & topology PY - 2024 SP - 2313 EP - 2343 VL - 28 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2313/ DO - 10.2140/gt.2024.28.2313 ID - GT_2024_28_5_a5 ER -
%0 Journal Article %A Davies, Alex %A Juhász, András %A Lackenby, Marc %A Tomašev, Nenad %T The signature and cusp geometry of hyperbolic knots %J Geometry & topology %D 2024 %P 2313-2343 %V 28 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2313/ %R 10.2140/gt.2024.28.2313 %F GT_2024_28_5_a5
Davies, Alex; Juhász, András; Lackenby, Marc; Tomašev, Nenad. The signature and cusp geometry of hyperbolic knots. Geometry & topology, Tome 28 (2024) no. 5, pp. 2313-2343. doi : 10.2140/gt.2024.28.2313. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2313/
[1] Bounds on exceptional Dehn filling, Geom. Topol. 4 (2000) 431 | DOI
,[2] A slope invariant and the A–polynomial of knots, preprint (2021)
, , ,[3] Lectures on hyperbolic geometry, Springer (1992) | DOI
, ,[4] Thick triangulations of hyperbolic n–manifolds, Pacific J. Math. 241 (2009) 215 | DOI
,[5] Regina: software for low-dimensional topology (1999–2021)
, , , ,[6] The orientable cusped hyperbolic 3–manifolds of minimum volume, Invent. Math. 146 (2001) 451 | DOI
, ,[7] Dehn surgery and negatively curved 3–manifolds, J. Differential Geom. 50 (1998) 591
, ,[8] SnapPy, a computer program for studying the geometry and topology of 3–manifolds (2021)
, , , ,[9] Slopes and signatures of links, Fund. Math. 258 (2022) 65 | DOI
, , ,[10] Effective distance between nested Margulis tubes, Trans. Amer. Math. Soc. 372 (2019) 4211 | DOI
, , ,[11] Effective bilipschitz bounds on drilling and filling, Geom. Topol. 26 (2022) 1077 | DOI
, , ,[12] On the signature of a link, Invent. Math. 47 (1978) 53 | DOI
, ,[13] Signatures of covering links, Canad. J. Math. 33 (1981) 381 | DOI
, , ,[14] Boundary slopes of immersed surfaces in 3–manifolds, J. Differential Geom. 52 (1999) 303
, , ,[15] A linear bound on the tetrahedral number of manifolds of bounded volume (after Jørgensen and Thurston), from: "Topology and geometry in dimension three" (editors W Li, L Bartolini, J Johnson, F Luo, R Myers, J H Rubinstein), Contemp. Math. 560, Amer. Math. Soc. (2011) 27 | DOI
, ,[16] Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243 | DOI
,[17] The maximal number of exceptional Dehn surgeries, Invent. Math. 191 (2013) 341 | DOI
, ,[18] Cusp volumes of alternating knots, Geom. Topol. 20 (2016) 2053 | DOI
, ,[19] KnotInfo: table of knot invariants, electronic reference (2021)
, ,[20] On Thurston’s uniformization theorem for three-dimensional manifolds, from: "The Smith conjecture" (editors J W Morgan, H Bass), Pure Appl. Math. 112, Academic (1984) 37 | DOI
,[21] Quasi-conformal mappings in n–space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 53 | DOI
,[22] The geometry and topology of three-manifolds, lecture notes (1979)
,[23] Nouvelles applications des paramètres continus à la théorie des formes quadratiques, deuxième mémoire : Recherches sur les parallélloèdres primitifs, J. Reine Angew. Math. 134 (1908) 198 | DOI
,[24] Nouvelles applications des paramètres continus à la théorie des formes quadratiques, premier mémoire : sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math. 133 (1908) 97 | DOI
,Cité par Sources :