Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give a new proof for the parabolic Verlinde formula in all ranks based on a comparison of wall-crossings in geometric invariant theory and certain iterated residue functionals. On the way, we develop a tautological variant of Hecke correspondences, calculate the Hilbert polynomials of the moduli spaces, and present a new, transparent, local approach to the –shift problem of the theory.
Szenes, András 1 ; Trapeznikova, Olga 1
@article{GT_2024_28_5_a4, author = {Szenes, Andr\'as and Trapeznikova, Olga}, title = {The parabolic {Verlinde} formula: iterated residues and wall-crossings}, journal = {Geometry & topology}, pages = {2259--2311}, publisher = {mathdoc}, volume = {28}, number = {5}, year = {2024}, doi = {10.2140/gt.2024.28.2259}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2259/} }
TY - JOUR AU - Szenes, András AU - Trapeznikova, Olga TI - The parabolic Verlinde formula: iterated residues and wall-crossings JO - Geometry & topology PY - 2024 SP - 2259 EP - 2311 VL - 28 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2259/ DO - 10.2140/gt.2024.28.2259 ID - GT_2024_28_5_a4 ER -
%0 Journal Article %A Szenes, András %A Trapeznikova, Olga %T The parabolic Verlinde formula: iterated residues and wall-crossings %J Geometry & topology %D 2024 %P 2259-2311 %V 28 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2259/ %R 10.2140/gt.2024.28.2259 %F GT_2024_28_5_a4
Szenes, András; Trapeznikova, Olga. The parabolic Verlinde formula: iterated residues and wall-crossings. Geometry & topology, Tome 28 (2024) no. 5, pp. 2259-2311. doi : 10.2140/gt.2024.28.2259. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2259/
[1] The Verlinde formulas as fixed point formulas, J. Symplectic Geom. 1 (2001) 1 | DOI
, , ,[2] A Lefschetz fixed point formula for elliptic complexes, II : Applications, Ann. of Math. 88 (1968) 451 | DOI
, ,[3] The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. A 308 (1983) 523 | DOI
, ,[4] Parabolic vector bundles on curves, Ark. Mat. 27 (1989) 15 | DOI
,[5] Symplectic geometry and the Verlinde formulas, from: "Surveys in differential geometry: differential geometry inspired by string theory" (editor S T Yau), Surv. Differ. Geom. 5, International (1999) 97 | DOI
, ,[6] Variations of moduli of parabolic bundles, Math. Ann. 301 (1995) 539 | DOI
, ,[7] Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. 87 (1998) 5 | DOI
, ,[8] Quantum Kirwan for quantum K–theory, from: "Facets of algebraic geometry, I" (editors P Aluffi, D Anderson, M Hering, M Mustaţă, S Payne), Lond. Math. Soc. Lect. Note Ser. 472, Cambridge Univ. Press (2022) 265
, ,[9] Techniques de construction et théorèmes d’existence en géométrie algébrique, IV : Les schémas de Hilbert, from: "Séminaire Bourbaki, 1960/1961", Benjamin (1966)
,[10] Algebraic geometry, 52, Springer (1977) | DOI
,[11] The Verlinde formula for parabolic bundles, J. Lond. Math. Soc. 63 (2001) 754 | DOI
,[12] Localization for nonabelian group actions, Topology 34 (1995) 291 | DOI
, ,[13] Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, Ann. of Math. 148 (1998) 109 | DOI
, ,[14] The decomposition formula for Verlinde sums, Ann. Inst. Fourier (Grenoble) 72 (2022) 1207 | DOI
, ,[15] Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980) 205 | DOI
, ,[16] Twisted K–homology and group-valued moment maps, Int. Math. Res. Not. 2012 (2012) 4563 | DOI
,[17] Singular reduction and quantization, Topology 38 (1999) 699 | DOI
, ,[18] Geometric invariant theory, 34, Springer (1982) | DOI
, ,[19] Geometry of Hecke cycles, I, from: "C P Ramanujam : a tribute" (editor K G Ramanathan), Tata Inst. Fundam. Res. Stud. Math. 8, Springer (1978) 291
, ,[20] Cohomology of the moduli of parabolic vector bundles, Proc. Indian Acad. Sci. Math. Sci. 95 (1986) 61 | DOI
,[21] Moduli of vector bundles on curves with parabolic structures, Bull. Amer. Math. Soc. 83 (1977) 124 | DOI
,[22] La formule de Verlinde, from: "Séminaire Bourbaki, 1994/1995", Astérisque 237, Soc. Math. France (1996)
,[23] Iterated residues and multiple Bernoulli polynomials, Int. Math. Res. Not. 1998 (1998) 937 | DOI
,[24] Residue theorem for rational trigonometric sums and Verlinde’s formula, Duke Math. J. 118 (2003) 189 | DOI
,[25] [Q,R] = 0 and Kostant partition functions, Enseign. Math. 63 (2017) 471 | DOI
, ,[26] The index formula for the moduli of G–bundles on a curve, Ann. of Math. 170 (2009) 495 | DOI
, ,[27] Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994) 317 | DOI
,[28] Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996) 691 | DOI
,[29] Multiplicities formula for geometric quantization, I, Duke Math. J. 82 (1996) 143 | DOI
,[30] Multiplicities formula for geometric quantization, II, Duke Math. J. 82 (1996) 181 | DOI
,[31] Fusion rules and modular transformations in 2D conformal field theory, Nuclear Phys. B 300 (1988) 360 | DOI
,[32] Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303 | DOI
,[33] On the cohomology of moduli spaces of rank two vector bundles over curves, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 533 | DOI
,Cité par Sources :