The parabolic Verlinde formula: iterated residues and wall-crossings
Geometry & topology, Tome 28 (2024) no. 5, pp. 2259-2311.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a new proof for the parabolic Verlinde formula in all ranks based on a comparison of wall-crossings in geometric invariant theory and certain iterated residue functionals. On the way, we develop a tautological variant of Hecke correspondences, calculate the Hilbert polynomials of the moduli spaces, and present a new, transparent, local approach to the ρ–shift problem of the theory.

DOI : 10.2140/gt.2024.28.2259
Keywords: Verlinde formula, wall-crossing, parabolic bundles

Szenes, András 1 ; Trapeznikova, Olga 1

1 Section de mathématiques, Université de Genève, Geneva, Switzerland
@article{GT_2024_28_5_a4,
     author = {Szenes, Andr\'as and Trapeznikova, Olga},
     title = {The parabolic {Verlinde} formula: iterated residues and wall-crossings},
     journal = {Geometry & topology},
     pages = {2259--2311},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2024},
     doi = {10.2140/gt.2024.28.2259},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2259/}
}
TY  - JOUR
AU  - Szenes, András
AU  - Trapeznikova, Olga
TI  - The parabolic Verlinde formula: iterated residues and wall-crossings
JO  - Geometry & topology
PY  - 2024
SP  - 2259
EP  - 2311
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2259/
DO  - 10.2140/gt.2024.28.2259
ID  - GT_2024_28_5_a4
ER  - 
%0 Journal Article
%A Szenes, András
%A Trapeznikova, Olga
%T The parabolic Verlinde formula: iterated residues and wall-crossings
%J Geometry & topology
%D 2024
%P 2259-2311
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2259/
%R 10.2140/gt.2024.28.2259
%F GT_2024_28_5_a4
Szenes, András; Trapeznikova, Olga. The parabolic Verlinde formula: iterated residues and wall-crossings. Geometry & topology, Tome 28 (2024) no. 5, pp. 2259-2311. doi : 10.2140/gt.2024.28.2259. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2259/

[1] A Alekseev, E Meinrenken, C Woodward, The Verlinde formulas as fixed point formulas, J. Symplectic Geom. 1 (2001) 1 | DOI

[2] M F Atiyah, R Bott, A Lefschetz fixed point formula for elliptic complexes, II : Applications, Ann. of Math. 88 (1968) 451 | DOI

[3] M F Atiyah, R Bott, The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. A 308 (1983) 523 | DOI

[4] U N Bhosle, Parabolic vector bundles on curves, Ark. Mat. 27 (1989) 15 | DOI

[5] J M Bismut, F Labourie, Symplectic geometry and the Verlinde formulas, from: "Surveys in differential geometry: differential geometry inspired by string theory" (editor S T Yau), Surv. Differ. Geom. 5, International (1999) 97 | DOI

[6] H U Boden, Y Hu, Variations of moduli of parabolic bundles, Math. Ann. 301 (1995) 539 | DOI

[7] I V Dolgachev, Y Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. 87 (1998) 5 | DOI

[8] E González, C Woodward, Quantum Kirwan for quantum K–theory, from: "Facets of algebraic geometry, I" (editors P Aluffi, D Anderson, M Hering, M Mustaţă, S Payne), Lond. Math. Soc. Lect. Note Ser. 472, Cambridge Univ. Press (2022) 265

[9] A Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique, IV : Les schémas de Hilbert, from: "Séminaire Bourbaki, 1960/1961", Benjamin (1966)

[10] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[11] L C Jeffrey, The Verlinde formula for parabolic bundles, J. Lond. Math. Soc. 63 (2001) 754 | DOI

[12] L C Jeffrey, F C Kirwan, Localization for nonabelian group actions, Topology 34 (1995) 291 | DOI

[13] L C Jeffrey, F C Kirwan, Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, Ann. of Math. 148 (1998) 109 | DOI

[14] Y Loizides, E Meinrenken, The decomposition formula for Verlinde sums, Ann. Inst. Fourier (Grenoble) 72 (2022) 1207 | DOI

[15] V B Mehta, C S Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980) 205 | DOI

[16] E Meinrenken, Twisted K–homology and group-valued moment maps, Int. Math. Res. Not. 2012 (2012) 4563 | DOI

[17] E Meinrenken, R Sjamaar, Singular reduction and quantization, Topology 38 (1999) 699 | DOI

[18] D Mumford, J Fogarty, Geometric invariant theory, 34, Springer (1982) | DOI

[19] M S Narasimhan, S Ramanan, Geometry of Hecke cycles, I, from: "C P Ramanujam : a tribute" (editor K G Ramanathan), Tata Inst. Fundam. Res. Stud. Math. 8, Springer (1978) 291

[20] N Nitsure, Cohomology of the moduli of parabolic vector bundles, Proc. Indian Acad. Sci. Math. Sci. 95 (1986) 61 | DOI

[21] C S Seshadri, Moduli of vector bundles on curves with parabolic structures, Bull. Amer. Math. Soc. 83 (1977) 124 | DOI

[22] C Sorger, La formule de Verlinde, from: "Séminaire Bourbaki, 1994/1995", Astérisque 237, Soc. Math. France (1996)

[23] A Szenes, Iterated residues and multiple Bernoulli polynomials, Int. Math. Res. Not. 1998 (1998) 937 | DOI

[24] A Szenes, Residue theorem for rational trigonometric sums and Verlinde’s formula, Duke Math. J. 118 (2003) 189 | DOI

[25] A Szenes, M Vergne, [Q,R] = 0 and Kostant partition functions, Enseign. Math. 63 (2017) 471 | DOI

[26] C Teleman, C T Woodward, The index formula for the moduli of G–bundles on a curve, Ann. of Math. 170 (2009) 495 | DOI

[27] M Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994) 317 | DOI

[28] M Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996) 691 | DOI

[29] M Vergne, Multiplicities formula for geometric quantization, I, Duke Math. J. 82 (1996) 143 | DOI

[30] M Vergne, Multiplicities formula for geometric quantization, II, Duke Math. J. 82 (1996) 181 | DOI

[31] E Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nuclear Phys. B 300 (1988) 360 | DOI

[32] E Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303 | DOI

[33] D Zagier, On the cohomology of moduli spaces of rank two vector bundles over curves, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 533 | DOI

Cité par Sources :