Packing Lagrangian tori
Geometry & topology, Tome 28 (2024) no. 5, pp. 2207-2257.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We consider the problem of packing a symplectic manifold with integral Lagrangian tori, that is, Lagrangian tori whose area homomorphisms take only integer values. We prove that the Clifford torus in S2 × S2 is a maximal integral packing, in the sense that any other integral Lagrangian torus must intersect it. In the other direction, we show that in any symplectic polydisk P(a,b) with a,b > 2, there is at least one integral Lagrangian torus in the complement of the collection of standard product integral Lagrangian tori.

DOI : 10.2140/gt.2024.28.2207
Keywords: symplectic manifolds, Lagrangian intersections

Hind, Richard 1 ; Kerman, Ely 2

1 Department of Mathematics, University of Notre Dame, Notre Dame, IN, United States
2 Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
@article{GT_2024_28_5_a3,
     author = {Hind, Richard and Kerman, Ely},
     title = {Packing {Lagrangian} tori},
     journal = {Geometry & topology},
     pages = {2207--2257},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2024},
     doi = {10.2140/gt.2024.28.2207},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2207/}
}
TY  - JOUR
AU  - Hind, Richard
AU  - Kerman, Ely
TI  - Packing Lagrangian tori
JO  - Geometry & topology
PY  - 2024
SP  - 2207
EP  - 2257
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2207/
DO  - 10.2140/gt.2024.28.2207
ID  - GT_2024_28_5_a3
ER  - 
%0 Journal Article
%A Hind, Richard
%A Kerman, Ely
%T Packing Lagrangian tori
%J Geometry & topology
%D 2024
%P 2207-2257
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2207/
%R 10.2140/gt.2024.28.2207
%F GT_2024_28_5_a3
Hind, Richard; Kerman, Ely. Packing Lagrangian tori. Geometry & topology, Tome 28 (2024) no. 5, pp. 2207-2257. doi : 10.2140/gt.2024.28.2207. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2207/

[1] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI

[2] O Buşe, Negative inflation and stability in symplectomorphism groups of ruled surfaces, J. Symplectic Geom. 9 (2011) 147 | DOI

[3] K Cieliebak, K Mohnke, Punctured holomorphic curves and Lagrangian embeddings, Invent. Math. 212 (2018) 213 | DOI

[4] K Cieliebak, M Schwingenheuer, Hamiltonian unknottedness of certain monotone Lagrangian tori in S2 × S2, Pacific J. Math. 299 (2019) 427 | DOI

[5] G Dimitroglou Rizell, E Goodman, A Ivrii, Lagrangian isotopy of tori in S2 × S2 and CP2, Geom. Funct. Anal. 26 (2016) 1297 | DOI

[6] M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 | DOI

[7] J Hicks, C Y Mak, Some cute applications of Lagrangian cobordisms towards examples in quantitative symplectic geometry, preprint (2022)

[8] R Hind, S Lisi, Symplectic embeddings of polydisks, Selecta Math. 21 (2015) 1099 | DOI

[9] R Hind, E Opshtein, Squeezing Lagrangian tori in dimension 4, Comment. Math. Helv. 95 (2020) 535 | DOI

[10] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations, I : Asymptotics, Ann. Inst. H. Poincaré C Anal. Non Linéaire 13 (1996) 337 | DOI

[11] A Ivrii, Lagrangian unknottedness of tori in certain symplectic 4–manifolds, PhD thesis, Stanford University (2003)

[12] F Lalonde, D Mcduff, J–curves and the classification of rational and ruled symplectic 4–manifolds, from: "Contact and symplectic geometry" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 3

[13] C Y Mak, I Smith, Non-displaceable Lagrangian links in four-manifolds, Geom. Funct. Anal. 31 (2021) 438 | DOI

[14] D Mcduff, Symplectomorphism groups and almost complex structures, from: "Essays on geometry and related topics, II" (editors É Ghys, P de la Harpe, V F R Jones, V Sergiescu, T Tsuboi), Monogr. Enseign. Math. 38, Enseign. Math. (2001) 527

[15] D Mcduff, L Polterovich, Symplectic packings and algebraic geometry, Invent. Math. 115 (1994) 405 | DOI

[16] D Mcduff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2004) | DOI

[17] Y G Oh, Addendum to : “Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks, I”, Comm. Pure Appl. Math. 48 (1995) 1299 | DOI

[18] L Polterovich, E Shelukhin, Lagrangian configurations and Hamiltonian maps, Compos. Math. 159 (2023) 2483 | DOI

[19] A F Ritter, I Smith, The monotone wrapped Fukaya category and the open-closed string map, Selecta Math. 23 (2017) 533 | DOI

[20] R Vianna, Infinitely many monotone Lagrangian tori in del Pezzo surfaces, Selecta Math. 23 (2017) 1955 | DOI

[21] C Wendl, Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv. 85 (2010) 347 | DOI

Cité par Sources :