Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We consider the problem of packing a symplectic manifold with integral Lagrangian tori, that is, Lagrangian tori whose area homomorphisms take only integer values. We prove that the Clifford torus in is a maximal integral packing, in the sense that any other integral Lagrangian torus must intersect it. In the other direction, we show that in any symplectic polydisk with , there is at least one integral Lagrangian torus in the complement of the collection of standard product integral Lagrangian tori.
Hind, Richard 1 ; Kerman, Ely 2
@article{GT_2024_28_5_a3, author = {Hind, Richard and Kerman, Ely}, title = {Packing {Lagrangian} tori}, journal = {Geometry & topology}, pages = {2207--2257}, publisher = {mathdoc}, volume = {28}, number = {5}, year = {2024}, doi = {10.2140/gt.2024.28.2207}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2207/} }
Hind, Richard; Kerman, Ely. Packing Lagrangian tori. Geometry & topology, Tome 28 (2024) no. 5, pp. 2207-2257. doi : 10.2140/gt.2024.28.2207. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2207/
[1] Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI
, , , , ,[2] Negative inflation and stability in symplectomorphism groups of ruled surfaces, J. Symplectic Geom. 9 (2011) 147 | DOI
,[3] Punctured holomorphic curves and Lagrangian embeddings, Invent. Math. 212 (2018) 213 | DOI
, ,[4] Hamiltonian unknottedness of certain monotone Lagrangian tori in S2 × S2, Pacific J. Math. 299 (2019) 427 | DOI
, ,[5] Lagrangian isotopy of tori in S2 × S2 and CP2, Geom. Funct. Anal. 26 (2016) 1297 | DOI
, , ,[6] Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 | DOI
,[7] Some cute applications of Lagrangian cobordisms towards examples in quantitative symplectic geometry, preprint (2022)
, ,[8] Symplectic embeddings of polydisks, Selecta Math. 21 (2015) 1099 | DOI
, ,[9] Squeezing Lagrangian tori in dimension 4, Comment. Math. Helv. 95 (2020) 535 | DOI
, ,[10] Properties of pseudoholomorphic curves in symplectisations, I : Asymptotics, Ann. Inst. H. Poincaré C Anal. Non Linéaire 13 (1996) 337 | DOI
, , ,[11] Lagrangian unknottedness of tori in certain symplectic 4–manifolds, PhD thesis, Stanford University (2003)
,[12] J–curves and the classification of rational and ruled symplectic 4–manifolds, from: "Contact and symplectic geometry" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 3
, ,[13] Non-displaceable Lagrangian links in four-manifolds, Geom. Funct. Anal. 31 (2021) 438 | DOI
, ,[14] Symplectomorphism groups and almost complex structures, from: "Essays on geometry and related topics, II" (editors É Ghys, P de la Harpe, V F R Jones, V Sergiescu, T Tsuboi), Monogr. Enseign. Math. 38, Enseign. Math. (2001) 527
,[15] Symplectic packings and algebraic geometry, Invent. Math. 115 (1994) 405 | DOI
, ,[16] J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2004) | DOI
, ,[17] Addendum to : “Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks, I”, Comm. Pure Appl. Math. 48 (1995) 1299 | DOI
,[18] Lagrangian configurations and Hamiltonian maps, Compos. Math. 159 (2023) 2483 | DOI
, ,[19] The monotone wrapped Fukaya category and the open-closed string map, Selecta Math. 23 (2017) 533 | DOI
, ,[20] Infinitely many monotone Lagrangian tori in del Pezzo surfaces, Selecta Math. 23 (2017) 1955 | DOI
,[21] Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv. 85 (2010) 347 | DOI
,Cité par Sources :