The persistence of a relative Rabinowitz–Floer complex
Geometry & topology, Tome 28 (2024) no. 5, pp. 2145-2206.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a quantitative refinement of the invariance of the Legendrian contact homology algebra in general contact manifolds. We show that in this general case, the Lagrangian cobordism trace of a Legendrian isotopy defines a DGA stable tame isomorphism, which is similar to a bifurcation invariance proof for a contactization contact manifold. We use this result to construct a relative version of the Rabinowitz–Floer complex defined for Legendrians that also satisfies a quantitative invariance, and study its persistent homology barcodes. We apply these barcodes to prove several results, including: displacement energy bounds for Legendrian submanifolds in terms of the oscillatory norms of the contact Hamiltonians; a proof of Rosen and Zhang’s nondegeneracy conjecture for the Shelukhin–Chekanov–Hofer metric on Legendrian submanifolds; and the nondisplaceability of the standard Legendrian real-projective space inside the contact real-projective space.

DOI : 10.2140/gt.2024.28.2145
Keywords: Legendrian submanifolds, Rabinowitz Floer homology

Dimitroglou Rizell, Georgios 1 ; Sullivan, Michael G 2

1 Department of Mathematics, Uppsala University, Uppsala, Sweden
2 Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, United States
@article{GT_2024_28_5_a2,
     author = {Dimitroglou Rizell, Georgios and Sullivan, Michael G},
     title = {The persistence of a relative {Rabinowitz{\textendash}Floer} complex},
     journal = {Geometry & topology},
     pages = {2145--2206},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2024},
     doi = {10.2140/gt.2024.28.2145},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2145/}
}
TY  - JOUR
AU  - Dimitroglou Rizell, Georgios
AU  - Sullivan, Michael G
TI  - The persistence of a relative Rabinowitz–Floer complex
JO  - Geometry & topology
PY  - 2024
SP  - 2145
EP  - 2206
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2145/
DO  - 10.2140/gt.2024.28.2145
ID  - GT_2024_28_5_a2
ER  - 
%0 Journal Article
%A Dimitroglou Rizell, Georgios
%A Sullivan, Michael G
%T The persistence of a relative Rabinowitz–Floer complex
%J Geometry & topology
%D 2024
%P 2145-2206
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2145/
%R 10.2140/gt.2024.28.2145
%F GT_2024_28_5_a2
Dimitroglou Rizell, Georgios; Sullivan, Michael G. The persistence of a relative Rabinowitz–Floer complex. Geometry & topology, Tome 28 (2024) no. 5, pp. 2145-2206. doi : 10.2140/gt.2024.28.2145. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2145/

[1] E Bao, K Honda, Semi-global Kuranishi charts and the definition of contact homology, Adv. Math. 414 (2023) 108864 | DOI

[2] F Bourgeois, A Morse–Bott approach to contact homology, from: "Symplectic and contact topology: interactions and perspectives" (editors Y Eliashberg, B Khesin, F Lalonde), Fields Inst. Commun. 35, Amer. Math. Soc. (2003) 55 | DOI

[3] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI

[4] B Chantraine, Lagrangian concordance of Legendrian knots, Algebr. Geom. Topol. 10 (2010) 63 | DOI

[5] B Chantraine, V Colin, G Dimitroglou Rizell, Positive Legendrian isotopies and Floer theory, Ann. Inst. Fourier (Grenoble) 69 (2019) 1679 | DOI

[6] B Chantraine, G Dimitroglou Rizell, P Ghiggini, R Golovko, Floer theory for Lagrangian cobordisms, J. Differential Geom. 114 (2020) 393 | DOI

[7] Y V Chekanov, Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J. 95 (1998) 213 | DOI

[8] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441 | DOI

[9] K Cieliebak, U Frauenfelder, A Oancea, Rabinowitz Floer homology and symplectic homology, Ann. Sci. École Norm. Sup. 43 (2010) 957 | DOI

[10] K Cieliebak, A Oancea, Symplectic homology and the Eilenberg–Steenrod axioms, Algebr. Geom. Topol. 18 (2018) 1953 | DOI

[11] K Conrad, SL2(Z), preprint (2022)

[12] M Damian, On the stable Morse number of a closed manifold, Bull. Lond. Math. Soc. 34 (2002) 420 | DOI

[13] G Dimitroglou Rizell, Legendrian ambient surgery and Legendrian contact homology, J. Symplectic Geom. 14 (2016) 811 | DOI

[14] G Dimitroglou Rizell, Lifting pseudo-holomorphic polygons to the symplectisation of P × R and applications, Quantum Topol. 7 (2016) 29 | DOI

[15] G Dimitroglou Rizell, Families of Legendrians and Lagrangians with unbounded spectral norm, J. Fixed Point Theory Appl. 24 (2022) 43 | DOI

[16] G Dimitroglou Rizell, M G Sullivan, An energy-capacity inequality for Legendrian submanifolds, J. Topol. Anal. 12 (2020) 547 | DOI

[17] G Dimitroglou Rizell, M G Sullivan, The persistence of the Chekanov–Eliashberg algebra, Selecta Math. 26 (2020) 69 | DOI

[18] L Diogo, S T Lisi, Morse–Bott split symplectic homology, J. Fixed Point Theory Appl. 21 (2019) 77 | DOI

[19] T Ekholm, Rational symplectic field theory over Z2 for exact Lagrangian cobordisms, J. Eur. Math. Soc. 10 (2008) 641 | DOI

[20] T Ekholm, Rational SFT, linearized Legendrian contact homology, and Lagrangian Floer cohomology, from: "Perspectives in analysis, geometry, and topology" (editors I Itenberg, B Jöricke, M Passare), Progr. Math. 296, Birkhäuser (2012) 109 | DOI

[21] T Ekholm, Holomorphic curves for Legendrian surgery, preprint (2019)

[22] T Ekholm, J B Etnyre, J M Sabloff, A duality exact sequence for Legendrian contact homology, Duke Math. J. 150 (2009) 1 | DOI

[23] T Ekholm, J Etnyre, M Sullivan, The contact homology of Legendrian submanifolds in R2n+1, J. Differential Geom. 71 (2005) 177

[24] T Ekholm, J Etnyre, M Sullivan, Orientations in Legendrian contact homology and exact Lagrangian immersions, Int. J. Math. 16 (2005) 453 | DOI

[25] T Ekholm, K Honda, T Kálmán, Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. 18 (2016) 2627 | DOI

[26] M Entov, L Polterovich, Legendrian persistence modules and dynamics, J. Fixed Point Theory Appl. 24 (2022) 30 | DOI

[27] J W Fish, H Hofer, Lectures on polyfolds and symplectic field theory, preprint (2018)

[28] J Hedicke, Lorentzian distance functions in contact geometry, J. Topol. Anal. 16 (2024) 205 | DOI

[29] C Karlsson, A note on coherent orientations for exact Lagrangian cobordisms, Quantum Topol. 11 (2020) 1 | DOI

[30] J Lafontaine, M Audin, Introduction: applications of pseudo-holomorphic curves to symplectic topology, from: "Holomorphic curves in symplectic geometry" (editors M Audin, J Lafontaine), Progr. Math. 117, Birkhäuser (1994) 1 | DOI

[31] N Legout, A∞–category of Lagrangian cobordisms in the symplectization of P × R, Quantum Topol. 14 (2023) 101 | DOI

[32] W J Merry, Lagrangian Rabinowitz Floer homology and twisted cotangent bundles, Geom. Dedicata 171 (2014) 345 | DOI

[33] L Nakamura, C0–limits of Legendrian submanifolds, preprint (2020)

[34] Y G Oh, Geometry and analysis of contact instantons and entanglement of Legendrian links, I, preprint (2021)

[35] Y Pan, D Rutherford, Augmentations and immersed Lagrangian fillings, J. Topol. 16 (2023) 368 | DOI

[36] J Pardon, Contact homology and virtual fundamental cycles, J. Amer. Math. Soc. 32 (2019) 825 | DOI

[37] L Polterovich, D Rosen, K Samvelyan, J Zhang, Topological persistence in geometry and analysis, 74, Amer. Math. Soc. (2020)

[38] J Robbin, D Salamon, The Maslov index for paths, Topology 32 (1993) 827 | DOI

[39] D Rosen, J Zhang, Chekanov’s dichotomy in contact topology, Math. Res. Lett. 27 (2020) 1165 | DOI

[40] J M Sabloff, L Traynor, The minimal length of a Lagrangian cobordism between Legendrians, Selecta Math. 23 (2017) 1419 | DOI

[41] E Shelukhin, The Hofer norm of a contactomorphism, J. Symplectic Geom. 15 (2017) 1173 | DOI

[42] M G Sullivan, K–theoretic invariants for Floer homology, Geom. Funct. Anal. 12 (2002) 810 | DOI

[43] M Usher, Local rigidity, contact homeomorphisms, and conformal factors, Math. Res. Lett. 28 (2021) 1875 | DOI

[44] M Usher, J Zhang, Persistent homology and Floer–Novikov theory, Geom. Topol. 20 (2016) 3333 | DOI

[45] C Wendl, Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv. 85 (2010) 347 | DOI

Cité par Sources :