Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give a quantitative refinement of the invariance of the Legendrian contact homology algebra in general contact manifolds. We show that in this general case, the Lagrangian cobordism trace of a Legendrian isotopy defines a DGA stable tame isomorphism, which is similar to a bifurcation invariance proof for a contactization contact manifold. We use this result to construct a relative version of the Rabinowitz–Floer complex defined for Legendrians that also satisfies a quantitative invariance, and study its persistent homology barcodes. We apply these barcodes to prove several results, including: displacement energy bounds for Legendrian submanifolds in terms of the oscillatory norms of the contact Hamiltonians; a proof of Rosen and Zhang’s nondegeneracy conjecture for the Shelukhin–Chekanov–Hofer metric on Legendrian submanifolds; and the nondisplaceability of the standard Legendrian real-projective space inside the contact real-projective space.
Dimitroglou Rizell, Georgios 1 ; Sullivan, Michael G 2
@article{GT_2024_28_5_a2, author = {Dimitroglou Rizell, Georgios and Sullivan, Michael G}, title = {The persistence of a relative {Rabinowitz{\textendash}Floer} complex}, journal = {Geometry & topology}, pages = {2145--2206}, publisher = {mathdoc}, volume = {28}, number = {5}, year = {2024}, doi = {10.2140/gt.2024.28.2145}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2145/} }
TY - JOUR AU - Dimitroglou Rizell, Georgios AU - Sullivan, Michael G TI - The persistence of a relative Rabinowitz–Floer complex JO - Geometry & topology PY - 2024 SP - 2145 EP - 2206 VL - 28 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2145/ DO - 10.2140/gt.2024.28.2145 ID - GT_2024_28_5_a2 ER -
%0 Journal Article %A Dimitroglou Rizell, Georgios %A Sullivan, Michael G %T The persistence of a relative Rabinowitz–Floer complex %J Geometry & topology %D 2024 %P 2145-2206 %V 28 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2145/ %R 10.2140/gt.2024.28.2145 %F GT_2024_28_5_a2
Dimitroglou Rizell, Georgios; Sullivan, Michael G. The persistence of a relative Rabinowitz–Floer complex. Geometry & topology, Tome 28 (2024) no. 5, pp. 2145-2206. doi : 10.2140/gt.2024.28.2145. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.2145/
[1] Semi-global Kuranishi charts and the definition of contact homology, Adv. Math. 414 (2023) 108864 | DOI
, ,[2] A Morse–Bott approach to contact homology, from: "Symplectic and contact topology: interactions and perspectives" (editors Y Eliashberg, B Khesin, F Lalonde), Fields Inst. Commun. 35, Amer. Math. Soc. (2003) 55 | DOI
,[3] Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI
, , , , ,[4] Lagrangian concordance of Legendrian knots, Algebr. Geom. Topol. 10 (2010) 63 | DOI
,[5] Positive Legendrian isotopies and Floer theory, Ann. Inst. Fourier (Grenoble) 69 (2019) 1679 | DOI
, , ,[6] Floer theory for Lagrangian cobordisms, J. Differential Geom. 114 (2020) 393 | DOI
, , , ,[7] Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J. 95 (1998) 213 | DOI
,[8] Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441 | DOI
,[9] Rabinowitz Floer homology and symplectic homology, Ann. Sci. École Norm. Sup. 43 (2010) 957 | DOI
, , ,[10] Symplectic homology and the Eilenberg–Steenrod axioms, Algebr. Geom. Topol. 18 (2018) 1953 | DOI
, ,[11] SL2(Z), preprint (2022)
,[12] On the stable Morse number of a closed manifold, Bull. Lond. Math. Soc. 34 (2002) 420 | DOI
,[13] Legendrian ambient surgery and Legendrian contact homology, J. Symplectic Geom. 14 (2016) 811 | DOI
,[14] Lifting pseudo-holomorphic polygons to the symplectisation of P × R and applications, Quantum Topol. 7 (2016) 29 | DOI
,[15] Families of Legendrians and Lagrangians with unbounded spectral norm, J. Fixed Point Theory Appl. 24 (2022) 43 | DOI
,[16] An energy-capacity inequality for Legendrian submanifolds, J. Topol. Anal. 12 (2020) 547 | DOI
, ,[17] The persistence of the Chekanov–Eliashberg algebra, Selecta Math. 26 (2020) 69 | DOI
, ,[18] Morse–Bott split symplectic homology, J. Fixed Point Theory Appl. 21 (2019) 77 | DOI
, ,[19] Rational symplectic field theory over Z2 for exact Lagrangian cobordisms, J. Eur. Math. Soc. 10 (2008) 641 | DOI
,[20] Rational SFT, linearized Legendrian contact homology, and Lagrangian Floer cohomology, from: "Perspectives in analysis, geometry, and topology" (editors I Itenberg, B Jöricke, M Passare), Progr. Math. 296, Birkhäuser (2012) 109 | DOI
,[21] Holomorphic curves for Legendrian surgery, preprint (2019)
,[22] A duality exact sequence for Legendrian contact homology, Duke Math. J. 150 (2009) 1 | DOI
, , ,[23] The contact homology of Legendrian submanifolds in R2n+1, J. Differential Geom. 71 (2005) 177
, , ,[24] Orientations in Legendrian contact homology and exact Lagrangian immersions, Int. J. Math. 16 (2005) 453 | DOI
, , ,[25] Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. 18 (2016) 2627 | DOI
, , ,[26] Legendrian persistence modules and dynamics, J. Fixed Point Theory Appl. 24 (2022) 30 | DOI
, ,[27] Lectures on polyfolds and symplectic field theory, preprint (2018)
, ,[28] Lorentzian distance functions in contact geometry, J. Topol. Anal. 16 (2024) 205 | DOI
,[29] A note on coherent orientations for exact Lagrangian cobordisms, Quantum Topol. 11 (2020) 1 | DOI
,[30] Introduction: applications of pseudo-holomorphic curves to symplectic topology, from: "Holomorphic curves in symplectic geometry" (editors M Audin, J Lafontaine), Progr. Math. 117, Birkhäuser (1994) 1 | DOI
, ,[31] A∞–category of Lagrangian cobordisms in the symplectization of P × R, Quantum Topol. 14 (2023) 101 | DOI
,[32] Lagrangian Rabinowitz Floer homology and twisted cotangent bundles, Geom. Dedicata 171 (2014) 345 | DOI
,[33] C0–limits of Legendrian submanifolds, preprint (2020)
,[34] Geometry and analysis of contact instantons and entanglement of Legendrian links, I, preprint (2021)
,[35] Augmentations and immersed Lagrangian fillings, J. Topol. 16 (2023) 368 | DOI
, ,[36] Contact homology and virtual fundamental cycles, J. Amer. Math. Soc. 32 (2019) 825 | DOI
,[37] Topological persistence in geometry and analysis, 74, Amer. Math. Soc. (2020)
, , , ,[38] The Maslov index for paths, Topology 32 (1993) 827 | DOI
, ,[39] Chekanov’s dichotomy in contact topology, Math. Res. Lett. 27 (2020) 1165 | DOI
, ,[40] The minimal length of a Lagrangian cobordism between Legendrians, Selecta Math. 23 (2017) 1419 | DOI
, ,[41] The Hofer norm of a contactomorphism, J. Symplectic Geom. 15 (2017) 1173 | DOI
,[42] K–theoretic invariants for Floer homology, Geom. Funct. Anal. 12 (2002) 810 | DOI
,[43] Local rigidity, contact homeomorphisms, and conformal factors, Math. Res. Lett. 28 (2021) 1875 | DOI
,[44] Persistent homology and Floer–Novikov theory, Geom. Topol. 20 (2016) 3333 | DOI
, ,[45] Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv. 85 (2010) 347 | DOI
,Cité par Sources :