The volume of pseudoeffective line bundles and partial equilibrium
Geometry & topology, Tome 28 (2024) no. 4, pp. 1957-1993.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let (L,heu) be a pseudoeffective line bundle on an n–dimensional compact Kähler manifold X. Let h0(X,Lk (ku)) be the dimension of the space of sections s of Lk such that hk(s,s)eku is integrable. We show that the limit of knh0(X,Lk (ku)) exists, and equals the nonpluripolar volume of P[u], the –model potential associated to u. We give applications of this result to Kähler quantization: fixing a Bernstein–Markov measure ν, we show that the partial Bergman measures of u converge weakly to the nonpluripolar Monge–Ampère measure of P[u], the partial equilibrium.

DOI : 10.2140/gt.2024.28.1957
Keywords: Hermitian line bundle, volume, Bergman kernel, equilibrium

Darvas, Tamás 1 ; Xia, Mingchen 2

1 Department of Mathematics, University of Maryland, College Park, MD, United States
2 Department of Mathematics, Chalmers Tekniska Högskola, Göteborg, Sweden, Institut de mathématiques de Jussieu, Sorbonne Université, Paris, France
@article{GT_2024_28_4_a8,
     author = {Darvas, Tam\'as and Xia, Mingchen},
     title = {The volume of pseudoeffective line bundles and partial equilibrium},
     journal = {Geometry & topology},
     pages = {1957--1993},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2024},
     doi = {10.2140/gt.2024.28.1957},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1957/}
}
TY  - JOUR
AU  - Darvas, Tamás
AU  - Xia, Mingchen
TI  - The volume of pseudoeffective line bundles and partial equilibrium
JO  - Geometry & topology
PY  - 2024
SP  - 1957
EP  - 1993
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1957/
DO  - 10.2140/gt.2024.28.1957
ID  - GT_2024_28_4_a8
ER  - 
%0 Journal Article
%A Darvas, Tamás
%A Xia, Mingchen
%T The volume of pseudoeffective line bundles and partial equilibrium
%J Geometry & topology
%D 2024
%P 1957-1993
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1957/
%R 10.2140/gt.2024.28.1957
%F GT_2024_28_4_a8
Darvas, Tamás; Xia, Mingchen. The volume of pseudoeffective line bundles and partial equilibrium. Geometry & topology, Tome 28 (2024) no. 4, pp. 1957-1993. doi : 10.2140/gt.2024.28.1957. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1957/

[1] A Ash, D Mumford, M Rapoport, Y S Tai, Smooth compactifications of locally symmetric varieties, Cambridge Univ. Press (2010) | DOI

[2] E Bedford, B A Taylor, The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math. 37 (1976) 1 | DOI

[3] E Bedford, B A Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982) 1 | DOI

[4] R J Berman, Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math. 131 (2009) 1485 | DOI

[5] R Berman, S Boucksom, Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math. 181 (2010) 337 | DOI

[6] R Berman, S Boucksom, D Witt Nyström, Fekete points and convergence towards equilibrium measures on complex manifolds, Acta Math. 207 (2011) 1 | DOI

[7] B Berndtsson, Probability measures associated to geodesics in the space of Kähler metrics, from: "Algebraic and analytic microlocal analysis" (editors M Hitrik, D Tamarkin, B Tsygan, S Zelditch), Springer Proc. Math. Stat. 269, Springer (2018) 395 | DOI

[8] L Bonavero, Inégalités de Morse holomorphes singulières, J. Geom. Anal. 8 (1998) 409 | DOI

[9] A M Botero, J I Burgos Gil, D Holmes, R De Jong, Chern–Weil and Hilbert–Samuel formulae for singular Hermitian line bundles, Doc. Math. 27 (2022) 2563 | DOI

[10] A Botero, J I Burgos Gil, D Holmes, R De Jong, Rings of Siegel–Jacobi forms of bounded relative index are not finitely generated, (2022)

[11] T Bouche, Convergence de la métrique de Fubini–Study d’un fibré linéaire positif, Ann. Inst. Fourier (Grenoble) 40 (1990) 117 | DOI

[12] S Boucksom, Cônes positifs des variétés complexes compactes, PhD thesis, Université Joseph Fourier–Grenoble I (2002)

[13] S Boucksom, On the volume of a line bundle, Int. J. Math. 13 (2002) 1043 | DOI

[14] S Boucksom, Singularities of plurisubharmonic functions and multiplier ideals, lecture notes (2017)

[15] S Boucksom, C Favre, M Jonsson, Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci. 44 (2008) 449 | DOI

[16] S Boucksom, P Eyssidieux, V Guedj, A Zeriahi, Monge–Ampère equations in big cohomology classes, Acta Math. 205 (2010) 199 | DOI

[17] J Cao, Numerical dimension and a Kawamata–Viehweg–Nadel-type vanishing theorem on compact Kähler manifolds, Compos. Math. 150 (2014) 1869 | DOI

[18] D Catlin, The Bergman kernel and a theorem of Tian, from: "Analysis and geometry in several complex variables" (editors G Komatsu, M Kuranishi), Birkhäuser (1999) 1 | DOI

[19] U Cegrell, Pluricomplex energy, Acta Math. 180 (1998) 187 | DOI

[20] X Chen, S Sun, Space of Kähler metrics, V : Kähler quantization, from: "Metric and differential geometry" (editors X Dai, X Rong), Progr. Math. 297, Birkhäuser (2012) 19 | DOI

[21] D Coman, G Marinescu, On the first order asymptotics of partial Bergman kernels, Ann. Fac. Sci. Toulouse Math. 26 (2017) 1193 | DOI

[22] D Coman, G Marinescu, V A Nguyên, Holomorphic sections of line bundles vanishing along subvarieties, preprint (2019)

[23] T Darvas, Geometric pluripotential theory on Kähler manifolds, from: "Advances in complex geometry" (editors Y A Rubinstein, B Shiffman), Contemp. Math. 735, Amer. Math. Soc. (2019) 1 | DOI

[24] T Darvas, M Xia, The closures of test configurations and algebraic singularity types, Adv. Math. 397 (2022) 108198 | DOI

[25] T Darvas, E Di Nezza, C H Lu, Monotonicity of nonpluripolar products and complex Monge–Ampère equations with prescribed singularity, Anal. PDE 11 (2018) 2049 | DOI

[26] T Darvas, C H Lu, Y A Rubinstein, Quantization in geometric pluripotential theory, Comm. Pure Appl. Math. 73 (2020) 1100 | DOI

[27] T Darvas, E Di Nezza, H C Lu, The metric geometry of singularity types, J. Reine Angew. Math. 771 (2021) 137 | DOI

[28] J P Demailly, Analytic methods in algebraic geometry, 1, International (2012)

[29] J P Demailly, On the cohomology of pseudoeffective line bundles, from: "Complex geometry and dynamics" (editors J E Fornæss, M Irgens, E F Wold), Abel Symp. 10, Springer (2015) 51 | DOI

[30] J P Demailly, Extension of holomorphic functions and cohomology classes from non reduced analytic subvarieties, from: "Geometric complex analysis" (editors J Byun, H R Cho, S Y Kim, K H Lee, J D Park), Springer Proc. Math. Stat. 246, Springer (2018) 97 | DOI

[31] J P Demailly, M Paun, Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. 159 (2004) 1247 | DOI

[32] J P Demailly, T Peternell, M Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Int. J. Math. 12 (2001) 689 | DOI

[33] E Di Nezza, S Trapani, Monge–Ampère measures on contact sets, Math. Res. Lett. 28 (2021) 1337 | DOI

[34] S K Donaldson, Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001) 479

[35] Q Guan, X Zhou, A proof of Demailly’s strong openness conjecture, Ann. of Math. 182 (2015) 605 | DOI

[36] V Guedj, A Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005) 607 | DOI

[37] V Guedj, A Zeriahi, The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007) 442 | DOI

[38] K Kaveh, A G Khovanskii, Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. of Math. 176 (2012) 925 | DOI

[39] D Kim, Equivalence of plurisubharmonic singularities and Siu-type metrics, Monatsh. Math. 178 (2015) 85 | DOI

[40] D Kim, H Seo, Jumping numbers of analytic multiplier ideals, Ann. Polon. Math. 124 (2020) 257 | DOI

[41] Z Lu, On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch, Amer. J. Math. 122 (2000) 235 | DOI

[42] C H Lu, Comparison of Monge–Ampère capacities, Ann. Polon. Math. 126 (2021) 31 | DOI

[43] C H Lu, V D Nguyen, Degenerate complex Hessian equations on compact Kähler manifolds, Indiana Univ. Math. J. 64 (2015) 1721 | DOI

[44] X Ma, G Marinescu, Holomorphic Morse inequalities and Bergman kernels, 254, Birkhäuser (2007) | DOI

[45] D H Phong, J Sturm, The Monge–Ampère operator and geodesics in the space of Kähler potentials, Invent. Math. 166 (2006) 125 | DOI

[46] J Ross, M Singer, Asymptotics of partial density functions for divisors, J. Geom. Anal. 27 (2017) 1803 | DOI

[47] J Ross, D Witt Nyström, Analytic test configurations and geodesic rays, J. Symplectic Geom. 12 (2014) 125 | DOI

[48] J Ross, D Witt Nyström, Envelopes of positive metrics with prescribed singularities, Ann. Fac. Sci. Toulouse Math. 26 (2017) 687 | DOI

[49] B Runge, Theta functions and Siegel–Jacobi forms, Acta Math. 175 (1995) 165 | DOI

[50] B Shiffman, S Zelditch, Equilibrium distribution of zeros of random polynomials, Int. Math. Res. Not. 2003 (2003) 25 | DOI

[51] J Song, S Zelditch, Bergman metrics and geodesics in the space of Kähler metrics on toric varieties, Anal. PDE 3 (2010) 295 | DOI

[52] J Sun, Asymptotics of partial density function vanishing along smooth subvariety, preprint (2020)

[53] G Tian, Kähler metrics on algebraic manifolds, PhD thesis, Harvard University (1988)

[54] G Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990) 99

[55] A Trusiani, Kähler–Einstein metrics with prescribed singularities on Fano manifolds, J. Reine Angew. Math. 793 (2022) 1 | DOI

[56] H Tsuji, Extension of log pluricanonical forms from subvarieties, preprint (2007)

[57] D V Vu, Convexity of the class of currents with finite relative energy, Ann. Polon. Math. 128 (2022) 275 | DOI

[58] D Witt Nyström, Monotonicity of nonpluripolar Monge–Ampère masses, Indiana Univ. Math. J. 68 (2019) 579 | DOI

[59] M Xia, Integration by parts formula for non-pluripolar product, preprint (2019)

[60] M Xia, Partial Okounkov bodies and Duistermaat–Heckman measures of non-Archimedean metrics, preprint (2021)

[61] S T Yau, Nonlinear analysis in geometry, Enseign. Math. 33 (1987) 109

[62] S Zelditch, Szegő kernels and a theorem of Tian, Int. Math. Res. Not. 1998 (1998) 317 | DOI

[63] S Zelditch, P Zhou, Central limit theorem for spectral partial Bergman kernels, Geom. Topol. 23 (2019) 1961 | DOI

[64] S Zelditch, P Zhou, Interface asymptotics of partial Bergman kernels on S1–symmetric Kähler manifolds, J. Symplectic Geom. 17 (2019) 793 | DOI

[65] K Zhang, A quantization proof of the uniform Yau–Tian–Donaldson conjecture, J. Eur. Math. Soc. (2023) | DOI

Cité par Sources :