Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a pseudoeffective line bundle on an –dimensional compact Kähler manifold . Let be the dimension of the space of sections of such that is integrable. We show that the limit of exists, and equals the nonpluripolar volume of , the –model potential associated to . We give applications of this result to Kähler quantization: fixing a Bernstein–Markov measure , we show that the partial Bergman measures of converge weakly to the nonpluripolar Monge–Ampère measure of , the partial equilibrium.
Darvas, Tamás 1 ; Xia, Mingchen 2
@article{GT_2024_28_4_a8, author = {Darvas, Tam\'as and Xia, Mingchen}, title = {The volume of pseudoeffective line bundles and partial equilibrium}, journal = {Geometry & topology}, pages = {1957--1993}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2024}, doi = {10.2140/gt.2024.28.1957}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1957/} }
TY - JOUR AU - Darvas, Tamás AU - Xia, Mingchen TI - The volume of pseudoeffective line bundles and partial equilibrium JO - Geometry & topology PY - 2024 SP - 1957 EP - 1993 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1957/ DO - 10.2140/gt.2024.28.1957 ID - GT_2024_28_4_a8 ER -
Darvas, Tamás; Xia, Mingchen. The volume of pseudoeffective line bundles and partial equilibrium. Geometry & topology, Tome 28 (2024) no. 4, pp. 1957-1993. doi : 10.2140/gt.2024.28.1957. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1957/
[1] Smooth compactifications of locally symmetric varieties, Cambridge Univ. Press (2010) | DOI
, , , ,[2] The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math. 37 (1976) 1 | DOI
, ,[3] A new capacity for plurisubharmonic functions, Acta Math. 149 (1982) 1 | DOI
, ,[4] Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math. 131 (2009) 1485 | DOI
,[5] Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math. 181 (2010) 337 | DOI
, ,[6] Fekete points and convergence towards equilibrium measures on complex manifolds, Acta Math. 207 (2011) 1 | DOI
, , ,[7] Probability measures associated to geodesics in the space of Kähler metrics, from: "Algebraic and analytic microlocal analysis" (editors M Hitrik, D Tamarkin, B Tsygan, S Zelditch), Springer Proc. Math. Stat. 269, Springer (2018) 395 | DOI
,[8] Inégalités de Morse holomorphes singulières, J. Geom. Anal. 8 (1998) 409 | DOI
,[9] Chern–Weil and Hilbert–Samuel formulae for singular Hermitian line bundles, Doc. Math. 27 (2022) 2563 | DOI
, , , ,[10] Rings of Siegel–Jacobi forms of bounded relative index are not finitely generated, (2022)
, , , ,[11] Convergence de la métrique de Fubini–Study d’un fibré linéaire positif, Ann. Inst. Fourier (Grenoble) 40 (1990) 117 | DOI
,[12] Cônes positifs des variétés complexes compactes, PhD thesis, Université Joseph Fourier–Grenoble I (2002)
,[13] On the volume of a line bundle, Int. J. Math. 13 (2002) 1043 | DOI
,[14] Singularities of plurisubharmonic functions and multiplier ideals, lecture notes (2017)
,[15] Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci. 44 (2008) 449 | DOI
, , ,[16] Monge–Ampère equations in big cohomology classes, Acta Math. 205 (2010) 199 | DOI
, , , ,[17] Numerical dimension and a Kawamata–Viehweg–Nadel-type vanishing theorem on compact Kähler manifolds, Compos. Math. 150 (2014) 1869 | DOI
,[18] The Bergman kernel and a theorem of Tian, from: "Analysis and geometry in several complex variables" (editors G Komatsu, M Kuranishi), Birkhäuser (1999) 1 | DOI
,[19] Pluricomplex energy, Acta Math. 180 (1998) 187 | DOI
,[20] Space of Kähler metrics, V : Kähler quantization, from: "Metric and differential geometry" (editors X Dai, X Rong), Progr. Math. 297, Birkhäuser (2012) 19 | DOI
, ,[21] On the first order asymptotics of partial Bergman kernels, Ann. Fac. Sci. Toulouse Math. 26 (2017) 1193 | DOI
, ,[22] Holomorphic sections of line bundles vanishing along subvarieties, preprint (2019)
, , ,[23] Geometric pluripotential theory on Kähler manifolds, from: "Advances in complex geometry" (editors Y A Rubinstein, B Shiffman), Contemp. Math. 735, Amer. Math. Soc. (2019) 1 | DOI
,[24] The closures of test configurations and algebraic singularity types, Adv. Math. 397 (2022) 108198 | DOI
, ,[25] Monotonicity of nonpluripolar products and complex Monge–Ampère equations with prescribed singularity, Anal. PDE 11 (2018) 2049 | DOI
, , ,[26] Quantization in geometric pluripotential theory, Comm. Pure Appl. Math. 73 (2020) 1100 | DOI
, , ,[27] The metric geometry of singularity types, J. Reine Angew. Math. 771 (2021) 137 | DOI
, , ,[28] Analytic methods in algebraic geometry, 1, International (2012)
,[29] On the cohomology of pseudoeffective line bundles, from: "Complex geometry and dynamics" (editors J E Fornæss, M Irgens, E F Wold), Abel Symp. 10, Springer (2015) 51 | DOI
,[30] Extension of holomorphic functions and cohomology classes from non reduced analytic subvarieties, from: "Geometric complex analysis" (editors J Byun, H R Cho, S Y Kim, K H Lee, J D Park), Springer Proc. Math. Stat. 246, Springer (2018) 97 | DOI
,[31] Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. 159 (2004) 1247 | DOI
, ,[32] Pseudo-effective line bundles on compact Kähler manifolds, Int. J. Math. 12 (2001) 689 | DOI
, , ,[33] Monge–Ampère measures on contact sets, Math. Res. Lett. 28 (2021) 1337 | DOI
, ,[34] Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001) 479
,[35] A proof of Demailly’s strong openness conjecture, Ann. of Math. 182 (2015) 605 | DOI
, ,[36] Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005) 607 | DOI
, ,[37] The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007) 442 | DOI
, ,[38] Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. of Math. 176 (2012) 925 | DOI
, ,[39] Equivalence of plurisubharmonic singularities and Siu-type metrics, Monatsh. Math. 178 (2015) 85 | DOI
,[40] Jumping numbers of analytic multiplier ideals, Ann. Polon. Math. 124 (2020) 257 | DOI
, ,[41] On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch, Amer. J. Math. 122 (2000) 235 | DOI
,[42] Comparison of Monge–Ampère capacities, Ann. Polon. Math. 126 (2021) 31 | DOI
,[43] Degenerate complex Hessian equations on compact Kähler manifolds, Indiana Univ. Math. J. 64 (2015) 1721 | DOI
, ,[44] Holomorphic Morse inequalities and Bergman kernels, 254, Birkhäuser (2007) | DOI
, ,[45] The Monge–Ampère operator and geodesics in the space of Kähler potentials, Invent. Math. 166 (2006) 125 | DOI
, ,[46] Asymptotics of partial density functions for divisors, J. Geom. Anal. 27 (2017) 1803 | DOI
, ,[47] Analytic test configurations and geodesic rays, J. Symplectic Geom. 12 (2014) 125 | DOI
, ,[48] Envelopes of positive metrics with prescribed singularities, Ann. Fac. Sci. Toulouse Math. 26 (2017) 687 | DOI
, ,[49] Theta functions and Siegel–Jacobi forms, Acta Math. 175 (1995) 165 | DOI
,[50] Equilibrium distribution of zeros of random polynomials, Int. Math. Res. Not. 2003 (2003) 25 | DOI
, ,[51] Bergman metrics and geodesics in the space of Kähler metrics on toric varieties, Anal. PDE 3 (2010) 295 | DOI
, ,[52] Asymptotics of partial density function vanishing along smooth subvariety, preprint (2020)
,[53] Kähler metrics on algebraic manifolds, PhD thesis, Harvard University (1988)
,[54] On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990) 99
,[55] Kähler–Einstein metrics with prescribed singularities on Fano manifolds, J. Reine Angew. Math. 793 (2022) 1 | DOI
,[56] Extension of log pluricanonical forms from subvarieties, preprint (2007)
,[57] Convexity of the class of currents with finite relative energy, Ann. Polon. Math. 128 (2022) 275 | DOI
,[58] Monotonicity of nonpluripolar Monge–Ampère masses, Indiana Univ. Math. J. 68 (2019) 579 | DOI
,[59] Integration by parts formula for non-pluripolar product, preprint (2019)
,[60] Partial Okounkov bodies and Duistermaat–Heckman measures of non-Archimedean metrics, preprint (2021)
,[61] Nonlinear analysis in geometry, Enseign. Math. 33 (1987) 109
,[62] Szegő kernels and a theorem of Tian, Int. Math. Res. Not. 1998 (1998) 317 | DOI
,[63] Central limit theorem for spectral partial Bergman kernels, Geom. Topol. 23 (2019) 1961 | DOI
, ,[64] Interface asymptotics of partial Bergman kernels on S1–symmetric Kähler manifolds, J. Symplectic Geom. 17 (2019) 793 | DOI
, ,[65] A quantization proof of the uniform Yau–Tian–Donaldson conjecture, J. Eur. Math. Soc. (2023) | DOI
,Cité par Sources :