Pseudo-Anosovs are exponentially generic in mapping class groups
Geometry & topology, Tome 28 (2024) no. 4, pp. 1923-1955.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a finite generating set S, let us endow the mapping class group of a closed hyperbolic surface with the word metric for S. We discuss the following question: does the proportion of non-pseudo-Anosov mapping classes in the ball of radius R converge to 0 as R tends to infinity? We show that any finite subset S of the mapping class group is contained in a finite generating set S such that this proportion decays exponentially. Our strategy applies to weakly hyperbolic groups and does not refer to the automatic structure of the group.

DOI : 10.2140/gt.2024.28.1923
Keywords: mapping class group, pseudo-Anosov, random walk

Choi, Inhyeok 1

1 June E Huh Center for Mathematical Challenges, KIAS, Seoul, South Korea
@article{GT_2024_28_4_a7,
     author = {Choi, Inhyeok},
     title = {Pseudo-Anosovs are exponentially generic in mapping class groups},
     journal = {Geometry & topology},
     pages = {1923--1955},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2024},
     doi = {10.2140/gt.2024.28.1923},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1923/}
}
TY  - JOUR
AU  - Choi, Inhyeok
TI  - Pseudo-Anosovs are exponentially generic in mapping class groups
JO  - Geometry & topology
PY  - 2024
SP  - 1923
EP  - 1955
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1923/
DO  - 10.2140/gt.2024.28.1923
ID  - GT_2024_28_4_a7
ER  - 
%0 Journal Article
%A Choi, Inhyeok
%T Pseudo-Anosovs are exponentially generic in mapping class groups
%J Geometry & topology
%D 2024
%P 1923-1955
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1923/
%R 10.2140/gt.2024.28.1923
%F GT_2024_28_4_a7
Choi, Inhyeok. Pseudo-Anosovs are exponentially generic in mapping class groups. Geometry & topology, Tome 28 (2024) no. 4, pp. 1923-1955. doi : 10.2140/gt.2024.28.1923. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1923/

[1] H Baik, I Choi, D M Kim, Linear growth of translation lengths of random isometries on Gromov hyperbolic spaces and Teichmüller spaces, J. Inst. Math. Jussieu (2023) | DOI

[2] A Boulanger, P Mathieu, Ç Sert, A Sisto, Large deviations for random walks on Gromov-hyperbolic spaces, Ann. Sci. École Norm. Sup. 56 (2023) 885 | DOI

[3] M Calvez, B Wiest, Acylindrical hyperbolicity and Artin–Tits groups of spherical type, Geom. Dedicata 191 (2017) 199 | DOI

[4] I Choi, Central limit theorem and geodesic tracking on hyperbolic spaces and Teichmüller spaces, Adv. Math. 431 (2023) 109236 | DOI

[5] M Cumplido, B Wiest, A positive proportion of elements of mapping class groups is pseudo-Anosov, Bull. Lond. Math. Soc. 50 (2018) 390 | DOI

[6] V Erlandsson, J Souto, J Tao, Genericity of pseudo-Anosov mapping classes, when seen as mapping classes, Enseign. Math. 66 (2020) 419 | DOI

[7] B Farb, Some problems on mapping class groups and moduli space, from: "Problems on mapping class groups and related topics" (editor B Farb), Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006) 11 | DOI

[8] I Gekhtman, S J Taylor, G Tiozzo, Counting loxodromics for hyperbolic actions, J. Topol. 11 (2018) 379 | DOI

[9] I Gekhtman, S J Taylor, G Tiozzo, Counting problems in graph products and relatively hyperbolic groups, Israel J. Math. 237 (2020) 311 | DOI

[10] I Gekhtman, S J Taylor, G Tiozzo, Central limit theorems for counting measures in coarse negative curvature, Compos. Math. 158 (2022) 1980 | DOI

[11] S Gouëzel, Exponential bounds for random walks on hyperbolic spaces without moment conditions, Tunis. J. Math. 4 (2022) 635 | DOI

[12] J Maher, Exponential decay in the mapping class group, J. Lond. Math. Soc. 86 (2012) 366 | DOI

[13] J Maher, G Tiozzo, Random walks on weakly hyperbolic groups, J. Reine Angew. Math. 742 (2018) 187 | DOI

[14] K Rafi, Hyperbolicity in Teichmüller space, Geom. Topol. 18 (2014) 3025 | DOI

[15] W Y Yang, Genericity of contracting elements in groups, Math. Ann. 376 (2020) 823 | DOI

Cité par Sources :