Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a finite generating set , let us endow the mapping class group of a closed hyperbolic surface with the word metric for . We discuss the following question: does the proportion of non-pseudo-Anosov mapping classes in the ball of radius converge to as tends to infinity? We show that any finite subset of the mapping class group is contained in a finite generating set such that this proportion decays exponentially. Our strategy applies to weakly hyperbolic groups and does not refer to the automatic structure of the group.
Choi, Inhyeok 1
@article{GT_2024_28_4_a7, author = {Choi, Inhyeok}, title = {Pseudo-Anosovs are exponentially generic in mapping class groups}, journal = {Geometry & topology}, pages = {1923--1955}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2024}, doi = {10.2140/gt.2024.28.1923}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1923/} }
TY - JOUR AU - Choi, Inhyeok TI - Pseudo-Anosovs are exponentially generic in mapping class groups JO - Geometry & topology PY - 2024 SP - 1923 EP - 1955 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1923/ DO - 10.2140/gt.2024.28.1923 ID - GT_2024_28_4_a7 ER -
Choi, Inhyeok. Pseudo-Anosovs are exponentially generic in mapping class groups. Geometry & topology, Tome 28 (2024) no. 4, pp. 1923-1955. doi : 10.2140/gt.2024.28.1923. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1923/
[1] Linear growth of translation lengths of random isometries on Gromov hyperbolic spaces and Teichmüller spaces, J. Inst. Math. Jussieu (2023) | DOI
, , ,[2] Large deviations for random walks on Gromov-hyperbolic spaces, Ann. Sci. École Norm. Sup. 56 (2023) 885 | DOI
, , , ,[3] Acylindrical hyperbolicity and Artin–Tits groups of spherical type, Geom. Dedicata 191 (2017) 199 | DOI
, ,[4] Central limit theorem and geodesic tracking on hyperbolic spaces and Teichmüller spaces, Adv. Math. 431 (2023) 109236 | DOI
,[5] A positive proportion of elements of mapping class groups is pseudo-Anosov, Bull. Lond. Math. Soc. 50 (2018) 390 | DOI
, ,[6] Genericity of pseudo-Anosov mapping classes, when seen as mapping classes, Enseign. Math. 66 (2020) 419 | DOI
, , ,[7] Some problems on mapping class groups and moduli space, from: "Problems on mapping class groups and related topics" (editor B Farb), Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006) 11 | DOI
,[8] Counting loxodromics for hyperbolic actions, J. Topol. 11 (2018) 379 | DOI
, , ,[9] Counting problems in graph products and relatively hyperbolic groups, Israel J. Math. 237 (2020) 311 | DOI
, , ,[10] Central limit theorems for counting measures in coarse negative curvature, Compos. Math. 158 (2022) 1980 | DOI
, , ,[11] Exponential bounds for random walks on hyperbolic spaces without moment conditions, Tunis. J. Math. 4 (2022) 635 | DOI
,[12] Exponential decay in the mapping class group, J. Lond. Math. Soc. 86 (2012) 366 | DOI
,[13] Random walks on weakly hyperbolic groups, J. Reine Angew. Math. 742 (2018) 187 | DOI
, ,[14] Hyperbolicity in Teichmüller space, Geom. Topol. 18 (2014) 3025 | DOI
,[15] Genericity of contracting elements in groups, Math. Ann. 376 (2020) 823 | DOI
,Cité par Sources :