Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that the fundamental group of –surgery on a nontrivial knot in always admits an irreducible –representation. This answers a question of Kronheimer and Mrowka dating from their work on the property P conjecture. An important ingredient in our proof is a relationship between instanton Floer homology and the symplectic Floer homology of genus- surface diffeomorphisms, due to Ivan Smith. We use similar arguments at the end to extend our main result to infinitely many surgery slopes in the interval .
Baldwin, John A 1 ; Li, Zhenkun 2 ; Sivek, Steven 3 ; Ye, Fan 4
@article{GT_2024_28_4_a6, author = {Baldwin, John A and Li, Zhenkun and Sivek, Steven and Ye, Fan}, title = {Small {Dehn} surgery and {SU(2)}}, journal = {Geometry & topology}, pages = {1891--1922}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2024}, doi = {10.2140/gt.2024.28.1891}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1891/} }
TY - JOUR AU - Baldwin, John A AU - Li, Zhenkun AU - Sivek, Steven AU - Ye, Fan TI - Small Dehn surgery and SU(2) JO - Geometry & topology PY - 2024 SP - 1891 EP - 1922 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1891/ DO - 10.2140/gt.2024.28.1891 ID - GT_2024_28_4_a6 ER -
Baldwin, John A; Li, Zhenkun; Sivek, Steven; Ye, Fan. Small Dehn surgery and SU(2). Geometry & topology, Tome 28 (2024) no. 4, pp. 1891-1922. doi : 10.2140/gt.2024.28.1891. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1891/
[1] Small genus knots in lens spaces have small bridge number, Algebr. Geom. Topol. 6 (2006) 1519 | DOI
,[2] Stein fillings and SU(2) representations, Geom. Topol. 22 (2018) 4307 | DOI
, ,[3] Framed instanton homology and concordance, J. Topol. 14 (2021) 1113 | DOI
, ,[4] Instanton L–spaces and splicing, Ann. H. Lebesgue 5 (2022) 1213 | DOI
, ,[5] Khovanov homology detects the trefoils, Duke Math. J. 171 (2022) 885 | DOI
, ,[6] Instantons and L–space surgeries, J. Eur. Math. Soc. 25 (2023) 4033 | DOI
, ,[7] Sutured instanton homology and Heegaard diagrams, Compos. Math. 159 (2023) 1898 | DOI
, , ,[8] Khovanov homology and the cinquefoil, J. Eur. Math. Soc. (2024) | DOI
, , ,[9] Metabelian SL(n, C) representations of knot groups, Pacific J. Math. 238 (2008) 7 | DOI
, ,[10] Varieties of group representations and Casson’s invariant for rational homology 3–spheres, Trans. Amer. Math. Soc. 322 (1990) 507 | DOI
, ,[11] Knots, 5, de Gruyter (2003) | DOI
, ,[12] Symplectic Floer homology of area-preserving surface diffeomorphisms, Geom. Topol. 13 (2009) 2619 | DOI
,[13] Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI
,[14] Self-dual instantons and holomorphic curves, Ann. of Math. 139 (1994) 581 | DOI
, ,[15] Decomposing sutured monopole and instanton Floer homologies, Selecta Math. 29 (2023) 40 | DOI
, ,[16] (1,1) L–space knots, Compos. Math. 154 (2018) 918 | DOI
, , ,[17] On Floer homology and the Berge conjecture on knots admitting lens space surgeries, Trans. Amer. Math. Soc. 363 (2011) 949 | DOI
,[18] Representations of knot groups in SU(2), Trans. Amer. Math. Soc. 326 (1991) 795 | DOI
,[19] Witten’s conjecture and property P, Geom. Topol. 8 (2004) 295 | DOI
, ,[20] Dehn surgery, the fundamental group and SU(2), Math. Res. Lett. 11 (2004) 741 | DOI
, ,[21] Instanton Floer homology and the Alexander polynomial, Algebr. Geom. Topol. 10 (2010) 1715 | DOI
, ,[22] Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301
, ,[23] Periodic Floer homology and Seiberg–Witten–Floer cohomology, J. Symplectic Geom. 10 (2012) 81 | DOI
, ,[24] SU(2) representations and a large surgery formula, preprint (2021)
, ,[25] Instanton Floer homology, sutures, and Heegaard diagrams, J. Topol. 15 (2022) 39 | DOI
, ,[26] Instanton Floer homology, sutures, and Euler characteristics, Quantum Topol. 14 (2023) 201 | DOI
, ,[27] An enhanced Euler characteristic of sutured instanton homology, Int. Math. Res. Not. 2024 (2024) 2873 | DOI
, ,[28] Toroidal integer homology three-spheres have irreducible SU(2)–representations, J. Topol. 16 (2023) 344 | DOI
, , ,[29] Instanton homology and the Alexander polynomial, Proc. Amer. Math. Soc. 138 (2010) 3759 | DOI
,[30] On families of fibred knots with equal Seifert forms, Comm. Anal. Geom. 29 (2021) 465 | DOI
,[31] Elementary surgery along a torus knot, Pacific J. Math. 38 (1971) 737 | DOI
,[32] Characterizing slopes for torus knots, II, J. Knot Theory Ramifications 32 (2023) 2350023 | DOI
, ,[33] Lens space surgeries and L–space homology spheres, preprint (2007)
,[34] Instantons and odd Khovanov homology, J. Topol. 8 (2015) 744 | DOI
,[35] A menagerie of SU(2)–cyclic 3–manifolds, Int. Math. Res. Not. 2022 (2022) 8038 | DOI
, ,[36] SU(2)–cyclic surgeries and the pillowcase, J. Differential Geom. 121 (2022) 101 | DOI
, ,[37] Floer cohomology and pencils of quadrics, Invent. Math. 189 (2012) 149 | DOI
,[38] Hyperbolic structures on 3–manifolds, II : Surface groups and 3–manifolds which fiber over the circle, from: "Collected works of William P Thurston with commentary, II : –manifolds, complexity and geometric group theory" (editors B Farb, D Gabai, S P Kerckhoff), Amer. Math. Soc. (2022) 79
,[39] Symmetry of knots and cyclic surgery, Trans. Amer. Math. Soc. 330 (1992) 665 | DOI
, ,[40] Constrained knots in lens spaces, Algebr. Geom. Topol. 23 (2023) 1097 | DOI
,[41] A class of knots with simple SU(2)–representations, Selecta Math. 23 (2017) 2219 | DOI
,Cité par Sources :