Small Dehn surgery and SU(2)
Geometry & topology, Tome 28 (2024) no. 4, pp. 1891-1922.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that the fundamental group of 3–surgery on a nontrivial knot in S3 always admits an irreducible SU(2)–representation. This answers a question of Kronheimer and Mrowka dating from their work on the property P conjecture. An important ingredient in our proof is a relationship between instanton Floer homology and the symplectic Floer homology of genus-2 surface diffeomorphisms, due to Ivan Smith. We use similar arguments at the end to extend our main result to infinitely many surgery slopes in the interval [3,5).

DOI : 10.2140/gt.2024.28.1891
Keywords: instanton, $\mathrm{SU}(2)$, Floer homology, representations, knots, fundamental group

Baldwin, John A 1 ; Li, Zhenkun 2 ; Sivek, Steven 3 ; Ye, Fan 4

1 Department of Mathematics, Boston College, Chestnut Hill, MA, United States
2 Department of Mathematics, Stanford University, Stanford, CA, United States, School of Mathematics and Statistics, University of South Florida, Tampa, FL, United States
3 Department of Mathematics, Imperial College London, London, United Kingdom
4 Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, United Kingdom, Department of Mathematics, Harvard University, Cambridge, MA, United States
@article{GT_2024_28_4_a6,
     author = {Baldwin, John A and Li, Zhenkun and Sivek, Steven and Ye, Fan},
     title = {Small {Dehn} surgery and {SU(2)}},
     journal = {Geometry & topology},
     pages = {1891--1922},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2024},
     doi = {10.2140/gt.2024.28.1891},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1891/}
}
TY  - JOUR
AU  - Baldwin, John A
AU  - Li, Zhenkun
AU  - Sivek, Steven
AU  - Ye, Fan
TI  - Small Dehn surgery and SU(2)
JO  - Geometry & topology
PY  - 2024
SP  - 1891
EP  - 1922
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1891/
DO  - 10.2140/gt.2024.28.1891
ID  - GT_2024_28_4_a6
ER  - 
%0 Journal Article
%A Baldwin, John A
%A Li, Zhenkun
%A Sivek, Steven
%A Ye, Fan
%T Small Dehn surgery and SU(2)
%J Geometry & topology
%D 2024
%P 1891-1922
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1891/
%R 10.2140/gt.2024.28.1891
%F GT_2024_28_4_a6
Baldwin, John A; Li, Zhenkun; Sivek, Steven; Ye, Fan. Small Dehn surgery and SU(2). Geometry & topology, Tome 28 (2024) no. 4, pp. 1891-1922. doi : 10.2140/gt.2024.28.1891. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1891/

[1] K L Baker, Small genus knots in lens spaces have small bridge number, Algebr. Geom. Topol. 6 (2006) 1519 | DOI

[2] J A Baldwin, S Sivek, Stein fillings and SU(2) representations, Geom. Topol. 22 (2018) 4307 | DOI

[3] J A Baldwin, S Sivek, Framed instanton homology and concordance, J. Topol. 14 (2021) 1113 | DOI

[4] J A Baldwin, S Sivek, Instanton L–spaces and splicing, Ann. H. Lebesgue 5 (2022) 1213 | DOI

[5] J A Baldwin, S Sivek, Khovanov homology detects the trefoils, Duke Math. J. 171 (2022) 885 | DOI

[6] J A Baldwin, S Sivek, Instantons and L–space surgeries, J. Eur. Math. Soc. 25 (2023) 4033 | DOI

[7] J A Baldwin, Z Li, F Ye, Sutured instanton homology and Heegaard diagrams, Compos. Math. 159 (2023) 1898 | DOI

[8] J A Baldwin, Y Hu, S Sivek, Khovanov homology and the cinquefoil, J. Eur. Math. Soc. (2024) | DOI

[9] H U Boden, S Friedl, Metabelian SL(n, C) representations of knot groups, Pacific J. Math. 238 (2008) 7 | DOI

[10] S Boyer, A Nicas, Varieties of group representations and Casson’s invariant for rational homology 3–spheres, Trans. Amer. Math. Soc. 322 (1990) 507 | DOI

[11] G Burde, H Zieschang, Knots, 5, de Gruyter (2003) | DOI

[12] A Cotton-Clay, Symplectic Floer homology of area-preserving surface diffeomorphisms, Geom. Topol. 13 (2009) 2619 | DOI

[13] S K Donaldson, Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI

[14] S Dostoglou, D A Salamon, Self-dual instantons and holomorphic curves, Ann. of Math. 139 (1994) 581 | DOI

[15] S Ghosh, Z Li, Decomposing sutured monopole and instanton Floer homologies, Selecta Math. 29 (2023) 40 | DOI

[16] J E Greene, S Lewallen, F Vafaee, (1,1) L–space knots, Compos. Math. 154 (2018) 918 | DOI

[17] M Hedden, On Floer homology and the Berge conjecture on knots admitting lens space surgeries, Trans. Amer. Math. Soc. 363 (2011) 949 | DOI

[18] E P Klassen, Representations of knot groups in SU(2), Trans. Amer. Math. Soc. 326 (1991) 795 | DOI

[19] P B Kronheimer, T S Mrowka, Witten’s conjecture and property P, Geom. Topol. 8 (2004) 295 | DOI

[20] P B Kronheimer, T S Mrowka, Dehn surgery, the fundamental group and SU(2), Math. Res. Lett. 11 (2004) 741 | DOI

[21] P Kronheimer, T Mrowka, Instanton Floer homology and the Alexander polynomial, Algebr. Geom. Topol. 10 (2010) 1715 | DOI

[22] P Kronheimer, T Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301

[23] Y J Lee, C H Taubes, Periodic Floer homology and Seiberg–Witten–Floer cohomology, J. Symplectic Geom. 10 (2012) 81 | DOI

[24] Z Li, F Ye, SU(2) representations and a large surgery formula, preprint (2021)

[25] Z Li, F Ye, Instanton Floer homology, sutures, and Heegaard diagrams, J. Topol. 15 (2022) 39 | DOI

[26] Z Li, F Ye, Instanton Floer homology, sutures, and Euler characteristics, Quantum Topol. 14 (2023) 201 | DOI

[27] Z Li, F Ye, An enhanced Euler characteristic of sutured instanton homology, Int. Math. Res. Not. 2024 (2024) 2873 | DOI

[28] T Lidman, J Pinzón-Caicedo, R Zentner, Toroidal integer homology three-spheres have irreducible SU(2)–representations, J. Topol. 16 (2023) 344 | DOI

[29] Y Lim, Instanton homology and the Alexander polynomial, Proc. Amer. Math. Soc. 138 (2010) 3759 | DOI

[30] F Misev, On families of fibred knots with equal Seifert forms, Comm. Anal. Geom. 29 (2021) 465 | DOI

[31] L Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971) 737 | DOI

[32] Y Ni, X Zhang, Characterizing slopes for torus knots, II, J. Knot Theory Ramifications 32 (2023) 2350023 | DOI

[33] J Rasmussen, Lens space surgeries and L–space homology spheres, preprint (2007)

[34] C W Scaduto, Instantons and odd Khovanov homology, J. Topol. 8 (2015) 744 | DOI

[35] S Sivek, R Zentner, A menagerie of SU(2)–cyclic 3–manifolds, Int. Math. Res. Not. 2022 (2022) 8038 | DOI

[36] S Sivek, R Zentner, SU(2)–cyclic surgeries and the pillowcase, J. Differential Geom. 121 (2022) 101 | DOI

[37] I Smith, Floer cohomology and pencils of quadrics, Invent. Math. 189 (2012) 149 | DOI

[38] W P Thurston, Hyperbolic structures on 3–manifolds, II : Surface groups and 3–manifolds which fiber over the circle, from: "Collected works of William P Thurston with commentary, II : –manifolds, complexity and geometric group theory" (editors B Farb, D Gabai, S P Kerckhoff), Amer. Math. Soc. (2022) 79

[39] S C Wang, Q Zhou, Symmetry of knots and cyclic surgery, Trans. Amer. Math. Soc. 330 (1992) 665 | DOI

[40] F Ye, Constrained knots in lens spaces, Algebr. Geom. Topol. 23 (2023) 1097 | DOI

[41] R Zentner, A class of knots with simple SU(2)–representations, Selecta Math. 23 (2017) 2219 | DOI

Cité par Sources :