Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We build an analogue of the Gromov boundary for any proper geodesic metric space, hence for any finitely generated group. More precisely, for any proper geodesic metric space and any sublinear function , we construct a boundary for , denoted by , that is quasi-isometrically invariant and metrizable. As an application, we show that when is the mapping class group of a finite type surface or a relatively hyperbolic group, with minimal assumptions, the Poisson boundary of can be realized on the –Morse boundary of equipped with the word metric associated to any finite generating set.
Qing, Yulan 1 ; Rafi, Kasra 2 ; Tiozzo, Giulio 2
@article{GT_2024_28_4_a5, author = {Qing, Yulan and Rafi, Kasra and Tiozzo, Giulio}, title = {Sublinearly {Morse} boundary, {II:} {Proper} geodesic spaces}, journal = {Geometry & topology}, pages = {1829--1889}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2024}, doi = {10.2140/gt.2024.28.1829}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1829/} }
TY - JOUR AU - Qing, Yulan AU - Rafi, Kasra AU - Tiozzo, Giulio TI - Sublinearly Morse boundary, II: Proper geodesic spaces JO - Geometry & topology PY - 2024 SP - 1829 EP - 1889 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1829/ DO - 10.2140/gt.2024.28.1829 ID - GT_2024_28_4_a5 ER -
%0 Journal Article %A Qing, Yulan %A Rafi, Kasra %A Tiozzo, Giulio %T Sublinearly Morse boundary, II: Proper geodesic spaces %J Geometry & topology %D 2024 %P 1829-1889 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1829/ %R 10.2140/gt.2024.28.1829 %F GT_2024_28_4_a5
Qing, Yulan; Rafi, Kasra; Tiozzo, Giulio. Sublinearly Morse boundary, II: Proper geodesic spaces. Geometry & topology, Tome 28 (2024) no. 4, pp. 1829-1889. doi : 10.2140/gt.2024.28.1829. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1829/
[1] Strongly contracting geodesics in outer space, Geom. Topol. 15 (2011) 2181 | DOI
,[2] Growth tight actions, Pacific J. Math. 278 (2015) 1 | DOI
, , ,[3] Characterizations of Morse quasi-geodesics via superlinear divergence and sublinear contraction, Doc. Math. 22 (2017) 1193 | DOI
, , , ,[4] Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol. 10 (2006) 1523 | DOI
,[5] Hierarchically hyperbolic spaces, I : Curve complexes for cubical groups, Geom. Topol. 21 (2017) 1731 | DOI
, , ,[6] A characterization of higher rank symmetric spaces via bounded cohomology, Geom. Funct. Anal. 19 (2009) 11 | DOI
, ,[7] Asymptotic entropy and Green speed for random walks on countable groups, Ann. Probab. 36 (2008) 1134 | DOI
, , ,[8] General topology, chapters 1–4, Springer (1989) | DOI
,[9] Statistics and compression of scl, Ergodic Theory Dynam. Systems 35 (2015) 64 | DOI
, ,[10] A metrizable topology on the contracting boundary of a group, Trans. Amer. Math. Soc. 372 (2019) 1555 | DOI
, ,[11] Contracting boundaries of CAT(0) spaces, J. Topol. 8 (2015) 93 | DOI
, ,[12] Sur l’équation de convolution μ = μ ∗ σ, C. R. Acad. Sci. Paris 250 (1960) 799
, ,[13] Morse boundaries of proper geodesic metric spaces, Groups Geom. Dyn. 11 (2017) 1281 | DOI
,[14] An embedding of the Morse boundary in the Martin boundary, Algebr. Geom. Topol. 22 (2022) 1217 | DOI
, , ,[15] Spaces with nonpositive curvature and their ideal boundaries, Topology 39 (2000) 549 | DOI
, ,[16] Quasi-isometric classification of non-uniform lattices in semisimple groups of higher rank, Geom. Funct. Anal. 10 (2000) 327 | DOI
,[17] Divergence of geodesics in Teichmüller space and the mapping class group, Geom. Funct. Anal. 19 (2009) 722 | DOI
, ,[18] Random walk on groups with a finite number of generators, Dokl. Akad. Nauk SSSR 137 (1961) 1042
, ,[19] Coarse differentiation of quasi-isometries, I : Spaces not quasi-isometric to Cayley graphs, Ann. of Math. 176 (2012) 221 | DOI
, , ,[20] Coarse differentiation of quasi-isometries, II : Rigidity for Sol and lamplighter groups, Ann. of Math. 177 (2013) 869 | DOI
, , ,[21] Large-scale rank of Teichmüller space, Duke Math. J. 166 (2017) 1517 | DOI
, , ,[22] Rigidity of Teichmüller space, Geom. Topol. 22 (2018) 4259 | DOI
, , ,[23] Superrigidity and mapping class groups, Topology 37 (1998) 1169 | DOI
, ,[24] Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980) 205 | DOI
,[25] Shannon’s theorem for locally compact groups, Ann. Probab. 50 (2022) 61 | DOI
, ,[26] Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937) 133 | DOI
,[27] A Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (1963) 335 | DOI
,[28] Genericity of sublinearly morse directions in CAT(0) spaces and the Teichmüller space, preprint (2022)
, , ,[29] Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 | DOI
,[30] The Poisson boundary of hyperbolic groups, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994) 59
,[31] Boundaries of invariant Markov operators : the identification problem, from: "Ergodic theory of actions" (editors M Pollicott, K Schmidt), Lond. Math. Soc. Lect. Note Ser. 228, Cambridge Univ. Press (1996) 127 | DOI
,[32] The Poisson formula for groups with hyperbolic properties, Ann. of Math. 152 (2000) 659 | DOI
,[33] The Poisson boundary of the mapping class group, Invent. Math. 125 (1996) 221 | DOI
, ,[34] The Poisson boundary of Teichmüller space, J. Funct. Anal. 156 (1998) 301 | DOI
, ,[35] Asymptotically CAT(0) groups, Publ. Mat. 55 (2011) 67 | DOI
,[36] A multiplicative ergodic theorem and nonpositively curved spaces, Comm. Math. Phys. 208 (1999) 107 | DOI
, ,[37] Some groups having only elementary actions on metric spaces with hyperbolic boundaries, Geom. Dedicata 104 (2004) 119 | DOI
, ,[38] The boundary at infinity of the curve complex and the relative Teichmüller space, Groups Geom. Dyn. 16 (2022) 705 | DOI
,[39] Linear progress in the complex of curves, Trans. Amer. Math. Soc. 362 (2010) 2963 | DOI
,[40] Exponential decay in the mapping class group, J. Lond. Math. Soc. 86 (2012) 366 | DOI
,[41] Random walks on weakly hyperbolic groups, J. Reine Angew. Math. 742 (2018) 187 | DOI
, ,[42] Geometry of the complex of curves, II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 | DOI
, ,[43] Deviation inequalities for random walks, Duke Math. J. 169 (2020) 961 | DOI
, ,[44] A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc. 26 (1924) 25 | DOI
,[45] Sublinearly Morse boundary of CAT(0) admissible groups, J. Group Theory (2024) | DOI
, ,[46] Lacunary hyperbolic groups, Geom. Topol. 13 (2009) 2051 | DOI
, , ,[47] Sublinearly Morse boundary, I : CAT(0) spaces, Adv. Math. 404 (2022) 108442 | DOI
, ,[48] Excursions of generic geodesics in right-angled Artin groups and graph products, Int. Math. Res. Not. 2021 (2021) 16910 | DOI
, ,[49] Geodesics in the mapping class group, Algebr. Geom. Topol. 21 (2021) 2995 | DOI
, ,[50] Martin boundaries of random walks on Fuchsian groups, Israel J. Math. 44 (1983) 221 | DOI
,[51] On metric relative hyperbolicity, preprint (2012)
,[52] Projections and relative hyperbolicity, Enseign. Math. 59 (2013) 165 | DOI
,[53] Tracking rates of random walks, Israel J. Math. 220 (2017) 1 | DOI
,[54] Contracting elements and random walks, J. Reine Angew. Math. 742 (2018) 79 | DOI
,[55] Largest projections for random walks and shortest curves in random mapping tori, Math. Res. Lett. 26 (2019) 293 | DOI
, ,[56] Sublinear deviation between geodesics and sample paths, Duke Math. J. 164 (2015) 511 | DOI
,[57] Genericity of contracting elements in groups, Math. Ann. 376 (2020) 823 | DOI
,Cité par Sources :