On the subvarieties with nonsingular real loci of a real algebraic variety
Geometry & topology, Tome 28 (2024) no. 4, pp. 1693-1725 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

Let X be a smooth projective real algebraic variety. We give new positive and negative results on the problem of approximating a submanifold of the real locus of X by real loci of subvarieties of X, as well as on the problem of determining the subgroups of the Chow groups of X generated by subvarieties with nonsingular real loci, or with empty real loci.

DOI : 10.2140/gt.2024.28.1693
Keywords: real algebraic geometry, algebraic cycles, linkage, cobordism

Benoist, Olivier 1

1 Département de mathématiques et applications, École normale supérieure, CNRS, Paris, France
@article{10_2140_gt_2024_28_1693,
     author = {Benoist, Olivier},
     title = {On the subvarieties with nonsingular real loci of a real algebraic variety},
     journal = {Geometry & topology},
     pages = {1693--1725},
     year = {2024},
     volume = {28},
     number = {4},
     doi = {10.2140/gt.2024.28.1693},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1693/}
}
TY  - JOUR
AU  - Benoist, Olivier
TI  - On the subvarieties with nonsingular real loci of a real algebraic variety
JO  - Geometry & topology
PY  - 2024
SP  - 1693
EP  - 1725
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1693/
DO  - 10.2140/gt.2024.28.1693
ID  - 10_2140_gt_2024_28_1693
ER  - 
%0 Journal Article
%A Benoist, Olivier
%T On the subvarieties with nonsingular real loci of a real algebraic variety
%J Geometry & topology
%D 2024
%P 1693-1725
%V 28
%N 4
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1693/
%R 10.2140/gt.2024.28.1693
%F 10_2140_gt_2024_28_1693
Benoist, Olivier. On the subvarieties with nonsingular real loci of a real algebraic variety. Geometry & topology, Tome 28 (2024) no. 4, pp. 1693-1725. doi: 10.2140/gt.2024.28.1693

[1] R Abraham, J Robbin, Transversal mappings and flows, Benjamin (1967)

[2] J F Adams, Stable homotopy and generalised homology, Univ. Chicago Press (1974)

[3] S Akbulut, H C King, Real algebraic structures on topological spaces, Publ. Math. Inst. Hautes Études Sci. 53 (1981) 79 | DOI

[4] S Akbulut, H King, Submanifolds and homology of nonsingular real algebraic varieties, Amer. J. Math. 107 (1985) 45 | DOI

[5] S Akbulut, H King, Polynomial equations of immersed surfaces, Pacific J. Math. 131 (1988) 209 | DOI

[6] S Akbulut, H King, Topology of real algebraic sets, 25, Springer (1992) | DOI

[7] S Akbulut, H King, Transcendental submanifolds of RPn, Comment. Math. Helv. 80 (2005) 427 | DOI

[8] A Andreotti, T Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. 69 (1959) 713 | DOI

[9] A Beauville, Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne, from: "Algebraic geometry" (editors M Raynaud, T Shioda), Lecture Notes in Math. 1016, Springer (1983) 238 | DOI

[10] R Benedetti, A Tognoli, Approximation theorems in real algebraic geometry, Boll. Un. Mat. Ital. Suppl. 1980 (1980) 209

[11] R Benedetti, A Tognoli, On real algebraic vector bundles, Bull. Sci. Math. 104 (1980) 89

[12] O Benoist, O Debarre, Smooth subvarieties of Jacobians, Épijournal Géom. Algébrique (2023) 2

[13] O Benoist, O Wittenberg, On the integral Hodge conjecture for real varieties, I, Invent. Math. 222 (2020) 1 | DOI

[14] O Benoist, O Wittenberg, On the integral Hodge conjecture for real varieties, II, J. Éc. Polytech. Math. 7 (2020) 373 | DOI

[15] C Birkenhake, H Lange, Complex abelian varieties, 302, Springer (2004) | DOI

[16] J Bochnak, M Coste, M F Roy, Real algebraic geometry, 36, Springer (1998) | DOI

[17] J Bochnak, W Kucharz, On approximation of smooth submanifolds by nonsingular real algebraic subvarieties, Ann. Sci. École Norm. Sup. 36 (2003) 685 | DOI

[18] A Borel, A Haefliger, La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France 89 (1961) 461

[19] L Bröcker, Reelle Divisoren, Arch. Math. (Basel) 35 (1980) 140 | DOI

[20] J L Colliot-Thélène, F Ischebeck, L’équivalence rationnelle sur les cycles de dimension zéro des variétés algébriques réelles, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 723

[21] P E Conner, Differentiable periodic maps, 738, Springer (1979) | DOI

[22] V Cossart, O Piltant, Resolution of singularities of threefolds in positive characteristic, II, J. Algebra 321 (2009) 1836 | DOI

[23] M Coste, M Shiota, Nash triviality in families of Nash manifolds, Invent. Math. 108 (1992) 349 | DOI

[24] O Debarre, Sous-variétés de codimension 2 d’une variété abélienne, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 1237

[25] H Delfs, M Knebusch, Semialgebraic topology over a real closed field, II : Basic theory of semialgebraic spaces, Math. Z. 178 (1981) 175 | DOI

[26] W Fulton, Intersection theory, 2, Springer (1984) | DOI

[27] A Grothendieck, Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, II, Publ. Math. Inst. Hautes Études Sci. 24 (1965) 5

[28] A Grothendieck, Éléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, III, Publ. Math. Inst. Hautes Études Sci. 28 (1966) 5

[29] R Hartshorne, Algebraic geometry, 52, Springer (1977) | DOI

[30] R Hartshorne, E Rees, E Thomas, Nonsmoothing of algebraic cycles on Grassmann varieties, Bull. Amer. Math. Soc. 80 (1974) 847 | DOI

[31] H Hironaka, Smoothing of algebraic cycles of small dimensions, Amer. J. Math. 90 (1968) 1 | DOI

[32] M W Hirsch, Differential topology, 33, Springer (1976) | DOI

[33] C Huneke, B Ulrich, Divisor class groups and deformations, Amer. J. Math. 107 (1985) 1265 | DOI

[34] C Huneke, B Ulrich, The structure of linkage, Ann. of Math. 126 (1987) 277 | DOI

[35] C Huneke, B Ulrich, Algebraic linkage, Duke Math. J. 56 (1988) 415 | DOI

[36] F Ischebeck, H W Schülting, Rational and homological equivalence for real cycles, Invent. Math. 94 (1988) 307 | DOI

[37] S L Kleiman, Geometry on Grassmannians and applications to splitting bundles and smoothing cycles, Publ. Math. Inst. Hautes Études Sci. 36 (1969) 281 | DOI

[38] S O Kochman, Bordism, stable homotopy and Adams spectral sequences, 7, Amer. Math. Soc. (1996) | DOI

[39] V A Krasnov, Characteristic classes of vector bundles on a real algebraic variety, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991) 716

[40] V A Krasnov, On the equivariant Grothendieck cohomology of a real algebraic variety and its application, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994) 36

[41] W Kucharz, Rational and homological equivalence of real algebraic cycles, Geom. Dedicata 106 (2004) 113 | DOI

[42] W Kucharz, Transcendental submanifolds of projective space, Comment. Math. Helv. 84 (2009) 127 | DOI

[43] W Kucharz, J Van Hamel, Transcendental manifolds in real projective space and Stiefel–Whitney classes, Ann. Sc. Norm. Super. Pisa Cl. Sci. 8 (2009) 267

[44] D Laksov, Residual intersections and Todd’s formula for the double locus of a morphism, Acta Math. 140 (1978) 75 | DOI

[45] K Lamotke, The topology of complex projective varieties after S Lefschetz, Topology 20 (1981) 15 | DOI

[46] P W Michor, Manifolds of differentiable mappings, 3, Shiva (1980)

[47] J Milnor, On the cobordism ring Ω∗ and a complex analogue, I, Amer. J. Math. 82 (1960) 505 | DOI

[48] J Milnor, On the Stiefel–Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965) 223 | DOI

[49] J W Milnor, J D Stasheff, Characteristic classes, 76, Princeton Univ. Press (1974)

[50] V K Murty, Exceptional Hodge classes on certain abelian varieties, Math. Ann. 268 (1984) 197 | DOI

[51] C Peskine, L Szpiro, Liaison des variétés algébriques, I, Invent. Math. 26 (1974) 271 | DOI

[52] D Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Adv. Math. 7 (1971) 29 | DOI

[53] E Rees, E Thomas, On the divisibility of certain Chern numbers, Q. J. Math. 28 (1977) 389 | DOI

[54] E Rees, E Thomas, Realizing homology classes by almost-complex submanifolds, Math. Z. 172 (1980) 195 | DOI

[55] A M Robert, A course in p–adic analysis, 198, Springer (2000) | DOI

[56] C Scheiderer, Purity theorems for real spectra and applications, from: "Real analytic and algebraic geometry" (editors F Broglia, M Galbiati, A Tognoli), de Gruyter (1995) 229 | DOI

[57] M Seppälä, R Silhol, Moduli spaces for real algebraic curves and real abelian varieties, Math. Z. 201 (1989) 151 | DOI

[58] R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17 | DOI

[59] J A Todd, Invariant and covariant systems on an algebraic variety, Proc. Lond. Math. Soc. 46 (1940) 199 | DOI

[60] C T C Wall, Differential topology, 156, Cambridge Univ. Press (2016) | DOI

[61] H Whitney, Differentiable manifolds, Ann. of Math. 37 (1936) 645 | DOI

[62] H Whitney, The self-intersections of a smooth n–manifold in 2n–space, Ann. of Math. 45 (1944) 220 | DOI

Cité par Sources :