On automorphisms of high-dimensional solid tori
Geometry & topology, Tome 28 (2024) no. 4, pp. 1629-1692.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the infinite generation in the homotopy groups of the group of diffeomorphisms of S1 × D2n1, for 2n 6, in a range of degrees up to n 2. Our analysis relies on understanding the homotopy fibre of a linearisation map from the plus-construction of the classifying space of a certain space of self-embeddings of stabilisations of this manifold to a form of Hermitian K–theory of the integral group ring of π1(S1). We also show that these homotopy groups vanish rationally.

DOI : 10.2140/gt.2024.28.1629
Keywords: diffeomorphisms, block diffeomorphisms, solid tori, Weiss fibre sequence, self-embeddings, surgery theory, infinite generation

Bustamante, Mauricio 1 ; Randal-Williams, Oscar 2

1 Departamento de Matemáticas, Universidad Católica de Chile, Santiago, Chile
2 Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
@article{GT_2024_28_4_a2,
     author = {Bustamante, Mauricio and Randal-Williams, Oscar},
     title = {On automorphisms of high-dimensional solid tori},
     journal = {Geometry & topology},
     pages = {1629--1692},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2024},
     doi = {10.2140/gt.2024.28.1629},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1629/}
}
TY  - JOUR
AU  - Bustamante, Mauricio
AU  - Randal-Williams, Oscar
TI  - On automorphisms of high-dimensional solid tori
JO  - Geometry & topology
PY  - 2024
SP  - 1629
EP  - 1692
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1629/
DO  - 10.2140/gt.2024.28.1629
ID  - GT_2024_28_4_a2
ER  - 
%0 Journal Article
%A Bustamante, Mauricio
%A Randal-Williams, Oscar
%T On automorphisms of high-dimensional solid tori
%J Geometry & topology
%D 2024
%P 1629-1692
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1629/
%R 10.2140/gt.2024.28.1629
%F GT_2024_28_4_a2
Bustamante, Mauricio; Randal-Williams, Oscar. On automorphisms of high-dimensional solid tori. Geometry & topology, Tome 28 (2024) no. 4, pp. 1629-1692. doi : 10.2140/gt.2024.28.1629. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1629/

[1] G Arone, M Mahowald, The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres, Invent. Math. 135 (1999) 743 | DOI

[2] A Bak, K–theory of forms, 98, Princeton Univ. Press (1981)

[3] H Bass, A Heller, R G Swan, The Whitehead group of a polynomial extension, Inst. Hautes Études Sci. Publ. Math. 22 (1964) 61 | DOI

[4] H J Baues, On the group of homotopy equivalences of a manifold, Trans. Amer. Math. Soc. 348 (1996) 4737 | DOI

[5] J C Becker, D H Gottlieb, The transfer map and fiber bundles, Topology 14 (1975) 1 | DOI

[6] M Behrens, The Goodwillie tower and the EHP sequence, 1026, Amer. Math. Soc. (2012) | DOI

[7] A Berglund, I Madsen, Homological stability of diffeomorphism groups, Pure Appl. Math. Q. 9 (2013) 1 | DOI

[8] A J Berrick, The plus-construction and fibrations, Q. J. Math. 33 (1982) 149 | DOI

[9] R Budney, D Gabai, Knotted 3–balls in S4, preprint (2019)

[10] D Burghelea, The structure of block-automorphisms of M × S1, Topology 16 (1977) 65 | DOI

[11] D Burghelea, R Lashof, Geometric transfer and the homotopy type of the automorphism groups of a manifold, Trans. Amer. Math. Soc. 269 (1982) 1 | DOI

[12] D Burghelea, R Lashof, M Rothenberg, Groups of automorphisms of manifolds, 473, Springer (1975) | DOI

[13] B Calmès, E Dotto, Y Harpaz, F Hebestreit, M Land, K Moi, D Nardin, T Nikolaus, W Steimle, Hermitian K–theory for stable ∞–categories, II : Cobordism categories and additivity, preprint (2020)

[14] B Calmès, E Dotto, Y Harpaz, F Hebestreit, M Land, K Moi, D Nardin, T Nikolaus, W Steimle, Hermitian K–theory for stable ∞–categories, III : Grothendieck–Witt groups of rings, preprint (2020)

[15] D Crowley, J Sixt, Stably diffeomorphic manifolds and l2q+1(Z[π]), Forum Math. 23 (2011) 483 | DOI

[16] F T Farrell, W C Hsiang, On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, from: "Algebraic and geometric topology, I" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 325 | DOI

[17] N Friedrich, Homological stability of automorphism groups of quadratic modules and manifolds, Doc. Math. 22 (2017) 1729 | DOI

[18] S Galatius, O Randal-Williams, Stable moduli spaces of high-dimensional manifolds, Acta Math. 212 (2014) 257 | DOI

[19] S Galatius, O Randal-Williams, Homological stability for moduli spaces of high dimensional manifolds, II, Ann. of Math. 186 (2017) 127 | DOI

[20] S Galatius, O Randal-Williams, Homological stability for moduli spaces of high dimensional manifolds, I, J. Amer. Math. Soc. 31 (2018) 215 | DOI

[21] S Galatius, O Randal-Williams, Moduli spaces of manifolds : a user’s guide, from: "Handbook of homotopy theory" (editor H Miller), CRC (2020) 443 | DOI

[22] T G Goodwillie, Calculus, III : Taylor series, Geom. Topol. 7 (2003) 645 | DOI

[23] J Grunewald, J R Klein, T Macko, Operations on the A-theoretic nil-terms, J. Topol. 1 (2008) 317 | DOI

[24] A J Hahn, O T O’Meara, The classical groups and K–theory, 291, Springer (1989) | DOI

[25] A E Hatcher, Concordance spaces, higher simple-homotopy theory, and applications, from: "Algebraic and geometric topology, I" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 3 | DOI

[26] A Hatcher, J Wagoner, Pseudo-isotopies of compact manifolds, 6, Soc. Math. France (1973)

[27] F Hebestreit, M Land, T Nikolaus, On the homotopy type of L-spectra of the integers, J. Topol. 14 (2021) 183 | DOI

[28] F Hebestreit, W Steimle, Stable moduli spaces of Hermitian forms, preprint (2021)

[29] L Hesselholt, On the Whitehead spectrum of the circle, from: "Algebraic topology" (editors N A Baas, E M Friedlander, B Jahren, P A Østvær), Abel Symp. 4, Springer (2009) 131 | DOI

[30] G Higman, The units of group-rings, Proc. Lond. Math. Soc. 46 (1940) 231 | DOI

[31] P J Hilton, A note on the P–homomorphism in homotopy groups of spheres, Proc. Cambridge Philos. Soc. 51 (1955) 230 | DOI

[32] W C Hsiang, R W Sharpe, Parametrized surgery and isotopy, Pacific J. Math. 67 (1976) 401 | DOI

[33] A Kosiński, On the inertia group of π–manifolds, Amer. J. Math. 89 (1967) 227 | DOI

[34] M Krannich, Mapping class groups of highly connected (4k+2)–manifolds, Selecta Math. 26 (2020) 81 | DOI

[35] M Krannich, A homological approach to pseudoisotopy theory, I, Invent. Math. 227 (2022) 1093 | DOI

[36] M Kreck, Isotopy classes of diffeomorphisms of (k−1)–connected almost-parallelizable 2k–manifolds, from: "Algebraic topology" (editors J L Dupont, I H Madsen), Lecture Notes in Math. 763, Springer (1979) 643 | DOI

[37] N J Kuhn, The geometry of the James–Hopf maps, Pacific J. Math. 102 (1982) 397 | DOI

[38] A Kupers, Some finiteness results for groups of automorphisms of manifolds, Geom. Topol. 23 (2019) 2277 | DOI

[39] A Kupers, O Randal-Williams, The cohomology of Torelli groups is algebraic, Forum Math. Sigma 8 (2020) | DOI

[40] A Kupers, O Randal-Williams, Framings of Wg,1, Q. J. Math. 72 (2021) 1029 | DOI

[41] A Kupers, O Randal-Williams, On diffeomorphisms of even-dimensional discs, J. Amer. Math. Soc. (2024) | DOI

[42] I Madsen, L R Taylor, B Williams, Tangential homotopy equivalences, Comment. Math. Helv. 55 (1980) 445 | DOI

[43] M Mahowald, Some Whitehead products in Sn, Topology 4 (1965) 17 | DOI

[44] J P May, Fibrewise localization and completion, Trans. Amer. Math. Soc. 258 (1980) 127 | DOI

[45] R J Milgram, A A Ranicki, The L–theory of Laurent extensions and genus 0 function fields, J. Reine Angew. Math. 406 (1990) 121 | DOI

[46] A J Nicas, Induction theorems for groups of homotopy manifold structures, 267, Amer. Math. Soc. (1982) | DOI

[47] D Quillen, Finite generation of the groups Ki of rings of algebraic integers, from: "Algebraic –theory, I : Higher –theories" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 179 | DOI

[48] F Quinn, A geometric formulation of surgery, from: "Topology of manifolds" (editors J C Cantrell, C H Edwards Jr.), Markham (1970) 500

[49] O Randal-Williams, N Wahl, Homological stability for automorphism groups, Adv. Math. 318 (2017) 534 | DOI

[50] A Ranicki, The algebraic theory of surgery, I : Foundations, Proc. Lond. Math. Soc. 40 (1980) 87 | DOI

[51] A Ranicki, Exact sequences in the algebraic theory of surgery, 26, Princeton Univ. Press (1981)

[52] A Ranicki, Lower K– and L–theory, 178, Cambridge Univ. Press (1992) | DOI

[53] C Schlichtkrull, The cyclotomic trace for symmetric ring spectra, from: "New topological contexts for Galois theory and algebraic geometry" (editors A Baker, B Richter), Geom. Topol. Monogr. 16, Geom. Topol. Publ. (2009) 545 | DOI

[54] J L Shaneson, Wall’s surgery obstruction groups for G × Z, Ann. of Math. 90 (1969) 296 | DOI

[55] D Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977) 269 | DOI

[56] S Thomeier, Einige Ergebnisse über Homotopiegruppen von Sphären, Math. Ann. 164 (1966) 225 | DOI

[57] F Waldhausen, Algebraic K–theory of topological spaces, I, from: "Algebraic and geometric topology, I" (editors A Baker, B Richter), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 35 | DOI

[58] F Waldhausen, B Jahren, J Rognes, Spaces of PL manifolds and categories of simple maps, 186, Princeton Univ. Press (2013) | DOI

[59] C T C Wall, The action of Γ2n on (n−1)–connected 2n–manifolds, Proc. Amer. Math. Soc. 13 (1962) 943 | DOI

[60] C T C Wall, Surgery on compact manifolds, 1, Academic (1970)

[61] T Watanabe, Theta-graph and diffeomorphisms of some 4–manifolds, preprint (2020)

[62] M S Weiss, Rational Pontryagin classes of Euclidean fiber bundles, Geom. Topol. 25 (2021) 3351 | DOI

[63] M Weiss, B Williams, Automorphisms of manifolds and algebraic K–theory, I, –Theory 1 (1988) 575 | DOI

[64] M Weiss, B Williams, Automorphisms of manifolds and algebraic K–theory, II, J. Pure Appl. Algebra 62 (1989) 47 | DOI

[65] M Weiss, B Williams, Automorphisms of manifolds, from: "Surveys on surgery theory, II" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 149, Princeton Univ. Press (2001) 165 | DOI

[66] M S Weiss, B E Williams, Automorphisms of manifolds and algebraic K–theory, III, 1084, Amer. Math. Soc. (2014) | DOI

[67] G W Whitehead, Elements of homotopy theory, 61, Springer (1978) | DOI

Cité par Sources :