Coarse-median preserving automorphisms
Geometry & topology, Tome 28 (2024) no. 1, pp. 161-266.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This paper has three main goals.

First, we study fixed subgroups of automorphisms of right-angled Artin and Coxeter groups. If φ is an untwisted automorphism of a RAAG, or an arbitrary automorphism of a RACG, we prove that Fix φ is finitely generated and undistorted. Up to replacing φ with a power, we show that Fix φ is quasiconvex with respect to the standard word metric. This implies that Fix φ is a virtual retract and a special group in the sense of Haglund and Wise.

By contrast, there exist “twisted” automorphisms of RAAGs for which Fix φ is undistorted but not of type F (hence not special), of type F but distorted, or even infinitely generated.

Secondly, we introduce the notion of “coarse-median preserving” automorphism of a coarse median group, which plays a key role in the above results. We show that automorphisms of RAAGs are coarse-median preserving if and only if they are untwisted. On the other hand, all automorphisms of Gromov-hyperbolic groups and right-angled Coxeter groups are coarse-median preserving. These facts also yield new or more elementary proofs of Nielsen realisation for RAAGs and RACGs.

Finally, we show that, for every special group G (in the sense of Haglund and Wise), every infinite-order, coarse-median preserving outer automorphism of G can be realised as a homothety of a finite-rank median space X equipped with a “moderate” isometric G–action. This generalises the classical result, due to Paulin, that every infinite-order outer automorphism of a hyperbolic group H projectively stabilises a small H–tree.

DOI : 10.2140/gt.2024.28.161
Keywords: coarse median, median space, special group, outer automorphism, right-angled Artin group, right-angled Coxeter group, untwisted automorphism, fixed subgroup, Scott conjecture, Nielsen realisation, uniformly nonelementary, moderate action

Fioravanti, Elia 1

1 Universität Bonn, Bonn, Germany
@article{GT_2024_28_1_a2,
     author = {Fioravanti, Elia},
     title = {Coarse-median preserving automorphisms},
     journal = {Geometry & topology},
     pages = {161--266},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2024},
     doi = {10.2140/gt.2024.28.161},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.161/}
}
TY  - JOUR
AU  - Fioravanti, Elia
TI  - Coarse-median preserving automorphisms
JO  - Geometry & topology
PY  - 2024
SP  - 161
EP  - 266
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.161/
DO  - 10.2140/gt.2024.28.161
ID  - GT_2024_28_1_a2
ER  - 
%0 Journal Article
%A Fioravanti, Elia
%T Coarse-median preserving automorphisms
%J Geometry & topology
%D 2024
%P 161-266
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.161/
%R 10.2140/gt.2024.28.161
%F GT_2024_28_1_a2
Fioravanti, Elia. Coarse-median preserving automorphisms. Geometry & topology, Tome 28 (2024) no. 1, pp. 161-266. doi : 10.2140/gt.2024.28.161. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.161/

[1] H J Bandelt, J Hedlíková, Median algebras, Discrete Math. 45 (1983) 1 | DOI

[2] B Beeker, N Lazarovich, Resolutions of CAT(0) cube complexes and accessibility properties, Algebr. Geom. Topol. 16 (2016) 2045 | DOI

[3] B Beeker, N Lazarovich, Stallings’ folds for cube complexes, Israel J. Math. 227 (2018) 331 | DOI

[4] J Behrstock, R Charney, Divergence and quasimorphisms of right-angled Artin groups, Math. Ann. 352 (2012) 339 | DOI

[5] J Behrstock, M F Hagen, A Sisto, Hierarchically hyperbolic spaces, I : Curve complexes for cubical groups, Geom. Topol. 21 (2017) 1731 | DOI

[6] J Behrstock, M Hagen, A Sisto, Hierarchically hyperbolic spaces, II : Combination theorems and the distance formula, Pacific J. Math. 299 (2019) 257 | DOI

[7] M Bestvina, Degenerations of the hyperbolic space, Duke Math. J. 56 (1988) 143 | DOI

[8] M Bestvina, N Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445 | DOI

[9] M Bestvina, K Bromberg, K Fujiwara, Proper actions on finite products of quasi-trees, Ann. H. Lebesgue 4 (2021) 685 | DOI

[10] M Bestvina, M Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995) 287 | DOI

[11] M Bestvina, M Feighn, M Handel, The Tits alternative for Out(Fn), I : Dynamics of exponentially-growing automorphisms, Ann. of Math. 151 (2000) 517 | DOI

[12] M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1 | DOI

[13] J Beyrer, E Fioravanti, Cross-ratios on CAT(0) cube complexes and marked length-spectrum rigidity, J. Lond. Math. Soc. 104 (2021) 1973 | DOI

[14] J Beyrer, E Fioravanti, Cross ratios and cubulations of hyperbolic groups, Math. Ann. 384 (2022) 1547 | DOI

[15] B H Bowditch, Coarse median spaces and groups, Pacific J. Math. 261 (2013) 53 | DOI

[16] B H Bowditch, Embedding median algebras in products of trees, Geom. Dedicata 170 (2014) 157 | DOI

[17] B H Bowditch, Some properties of median metric spaces, Groups Geom. Dyn. 10 (2016) 279 | DOI

[18] B H Bowditch, Convex hulls in coarse median spaces, preprint (2018)

[19] B H Bowditch, Large-scale rigidity properties of the mapping class groups, Pacific J. Math. 293 (2018) 1 | DOI

[20] C Bregman, R Charney, K Vogtmann, Outer space for RAAGs, Duke Math. J. 172 (2023) 1033 | DOI

[21] M R Bridson, The rhombic dodecahedron and semisimple actions of Aut(Fn) on CAT(0) spaces, Fund. Math. 214 (2011) 13 | DOI

[22] K U Bux, C Gonzalez, The Bestvina–Brady construction revisited : geometric computation of Σ–invariants for right-angled Artin groups, J. London Math. Soc. 60 (1999) 793 | DOI

[23] P E Caprace, M Sageev, Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal. 21 (2011) 851 | DOI

[24] R Charney, J Crisp, K Vogtmann, Automorphisms of 2–dimensional right-angled Artin groups, Geom. Topol. 11 (2007) 2227 | DOI

[25] R Charney, N Stambaugh, K Vogtmann, Outer space for untwisted automorphisms of right-angled Artin groups, Geom. Topol. 21 (2017) 1131 | DOI

[26] R Charney, H Sultan, Contracting boundaries of CAT(0) spaces, J. Topol. 8 (2015) 93 | DOI

[27] R Charney, K Vogtmann, Finiteness properties of automorphism groups of right-angled Artin groups, Bull. Lond. Math. Soc. 41 (2009) 94 | DOI

[28] R Charney, K Vogtmann, Subgroups and quotients of automorphism groups of RAAGs, from: "Low-dimensional and symplectic topology" (editor M Usher), Proc. Sympos. Pure Math. 82, Amer. Math. Soc. (2011) 9 | DOI

[29] I Chatterji, C Druţu, F Haglund, Kazhdan and Haagerup properties from the median viewpoint, Adv. Math. 225 (2010) 882 | DOI

[30] I Chatterji, T Fernós, A Iozzi, The median class and superrigidity of actions on CAT(0) cube complexes, J. Topol. 9 (2016) 349 | DOI

[31] V Chepoi, Graphs of some CAT(0) complexes, Adv. in Appl. Math. 24 (2000) 125 | DOI

[32] M M Cohen, M Lustig, On the dynamics and the fixed subgroup of a free group automorphism, Invent. Math. 96 (1989) 613 | DOI

[33] D Cooper, Automorphisms of free groups have finitely generated fixed point sets, J. Algebra 111 (1987) 453 | DOI

[34] M Cordes, M G Durham, Boundary convex cocompactness and stability of subgroups of finitely generated groups, Int. Math. Res. Not. 2019 (2019) 1699 | DOI

[35] L J Corredor, M A Gutierrez, A generating set for the automorphism group of a graph product of abelian groups, Internat. J. Algebra Comput. 22 (2012) 1250003 | DOI

[36] M Culler, Finite groups of outer automorphisms of a free group, from: "Contributions to group theory" (editors K I Appel, J G Ratcliffe, P E Schupp), Contemp. Math. 33, Amer. Math. Soc. (1984) 197 | DOI

[37] M Culler, J W Morgan, Group actions on R–trees, Proc. London Math. Soc. 55 (1987) 571 | DOI

[38] P Dani, I Levcovitz, Subgroups of right-angled Coxeter groups via Stallings-like techniques, J. Comb. Algebra 5 (2021) 237 | DOI

[39] M W Davis, The geometry and topology of Coxeter groups, 32, Princeton Univ. Press (2008)

[40] M W Davis, T Januszkiewicz, Right-angled Artin groups are commensurable with right-angled Coxeter groups, J. Pure Appl. Algebra 153 (2000) 229 | DOI

[41] M B Day, Peak reduction and finite presentations for automorphism groups of right-angled Artin groups, Geom. Topol. 13 (2009) 817 | DOI

[42] M B Day, A W Sale, R D Wade, Calculating the virtual cohomological dimension of the automorphism group of a RAAG, Bull. Lond. Math. Soc. 53 (2021) 259 | DOI

[43] M B Day, R D Wade, Relative automorphism groups of right-angled Artin groups, J. Topol. 12 (2019) 759 | DOI

[44] C Druţu, M Kapovich, Geometric group theory, 63, Amer. Math. Soc. (2018) | DOI

[45] J Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951) 353

[46] J L Dyer, G P Scott, Periodic automorphisms of free groups, Comm. Algebra 3 (1975) 195 | DOI

[47] T Fernós, The Furstenberg–Poisson boundary and CAT(0) cube complexes, Ergodic Theory Dynam. Systems 38 (2018) 2180 | DOI

[48] E Fioravanti, The Tits alternative for finite rank median spaces, Enseign. Math. 64 (2018) 89 | DOI

[49] E Fioravanti, Superrigidity of actions on finite rank median spaces, Adv. Math. 352 (2019) 1206 | DOI

[50] E Fioravanti, Roller boundaries for median spaces and algebras, Algebr. Geom. Topol. 20 (2020) 1325 | DOI

[51] E Fioravanti, Convex cores for actions on finite-rank median algebras, preprint (2021)

[52] E Fioravanti, On automorphisms and splittings of special groups, Compos. Math. 159 (2023) 232 | DOI

[53] D Gaboriau, A Jaeger, G Levitt, M Lustig, An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93 (1998) 425 | DOI

[54] D Gaboriau, G Levitt, The rank of actions on R–trees, Ann. Sci. École Norm. Sup. 28 (1995) 549

[55] D Gaboriau, G Levitt, M Lustig, A dendrological proof of the Scott conjecture for automorphisms of free groups, Proc. Edinburgh Math. Soc. 41 (1998) 325 | DOI

[56] S M Gersten, On fixed points of automorphisms of finitely generated free groups, Bull. Amer. Math. Soc. 8 (1983) 451 | DOI

[57] S M Gersten, Fixed points of automorphisms of free groups, Adv. in Math. 64 (1987) 51 | DOI

[58] R Z Goldstein, E C Turner, Automorphisms of free groups and their fixed points, Invent. Math. 78 (1984) 1 | DOI

[59] D Groves, M Hull, Abelian splittings of right-angled Artin groups, from: "Hyperbolic geometry and geometric group theory" (editors K Fujiwara, S Kojima, K Ohshika), Adv. Stud. Pure Math. 73, Math. Soc. Japan (2017) 159 | DOI

[60] V Guirardel, Cœur et nombre d’intersection pour les actions de groupes sur les arbres, Ann. Sci. École Norm. Sup. 38 (2005) 847 | DOI

[61] V Guirardel, A Sale, Vastness properties of automorphism groups of RAAGs, J. Topol. 11 (2018) 30 | DOI

[62] M F Hagen, Cocompactly cubulated crystallographic groups, J. Lond. Math. Soc. 90 (2014) 140 | DOI

[63] M F Hagen, T Susse, On hierarchical hyperbolicity of cubical groups, Israel J. Math. 236 (2020) 45 | DOI

[64] M F Hagen, N W M Touikan, Panel collapse and its applications, Groups Geom. Dyn. 13 (2019) 1285 | DOI

[65] M Hagen, H Wilton, Guirardel cores for cube complexes, in preparation

[66] F Haglund, Finite index subgroups of graph products, Geom. Dedicata 135 (2008) 167 | DOI

[67] F Haglund, Isometries of CAT(0) cube complexes are semi-simple, Ann. Math. Qué. 47 (2023) 249 | DOI

[68] F Haglund, D T Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551 | DOI

[69] S Hensel, D Kielak, Nielsen realisation for untwisted automorphisms of right-angled Artin groups, Proc. Lond. Math. Soc. 117 (2018) 901 | DOI

[70] S T Hu, Theory of retracts, Wayne State Univ. Press (1965) 234

[71] J Huang, B Kleiner, Groups quasi-isometric to right-angled Artin groups, Duke Math. J. 167 (2018) 537 | DOI

[72] W Jaco, P B Shalen, Surface homeomorphisms and periodicity, Topology 16 (1977) 347 | DOI

[73] T Koberda, J Mangahas, S J Taylor, The geometry of purely loxodromic subgroups of right-angled Artin groups, Trans. Amer. Math. Soc. 369 (2017) 8179 | DOI

[74] M Kolibiar, T Marcisová, On a question of J Hashimoto, Mat. Časopis Sloven. Akad. Vied 24 (1974) 179

[75] M R Laurence, A generating set for the automorphism group of a graph group, J. London Math. Soc. 52 (1995) 318 | DOI

[76] S Lefschetz, On locally connected and related sets, Ann. of Math. 35 (1934) 118 | DOI

[77] S Lefschetz, On locally connected and related sets (second paper), Duke Math. J. 2 (1936) 435 | DOI

[78] G Levitt, Automorphisms of hyperbolic groups and graphs of groups, Geom. Dedicata 114 (2005) 49 | DOI

[79] J Meier, H Meinert, L Vanwyk, Higher generation subgroup sets and the Σ–invariants of graph groups, Comment. Math. Helv. 73 (1998) 22 | DOI

[80] J Meier, L Vanwyk, The Bieri–Neumann–Strebel invariants for graph groups, Proc. London Math. Soc. 71 (1995) 263 | DOI

[81] A Minasyan, D Osin, Fixed subgroups of automorphisms of relatively hyperbolic groups, Q. J. Math. 63 (2012) 695 | DOI

[82] W D Neumann, The fixed group of an automorphism of a word hyperbolic group is rational, Invent. Math. 110 (1992) 147 | DOI

[83] G A Niblo, N Wright, J Zhang, A four point characterisation for coarse median spaces, Groups Geom. Dyn. 13 (2019) 939 | DOI

[84] G A Niblo, N Wright, J Zhang, Coarse median algebras: the intrinsic geometry of coarse median spaces and their intervals, Selecta Math. 27 (2021) 20 | DOI

[85] F Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math. 94 (1988) 53 | DOI

[86] F Paulin, Points fixes des automorphismes de groupe hyperbolique, Ann. Inst. Fourier (Grenoble) 39 (1989) 651 | DOI

[87] F Paulin, Outer automorphisms of hyperbolic groups and small actions on R–trees, from: "Arboreal group theory" (editor R C Alperin), Math. Sci. Res. Inst. Publ. 19, Springer (1991) 331 | DOI

[88] F Paulin, Sur les automorphismes extérieurs des groupes hyperboliques, Ann. Sci. École Norm. Sup. 30 (1997) 147 | DOI

[89] M Roller, Poc sets, median algebras and group actions, preprint (2016)

[90] M Sageev, CAT(0) cube complexes and groups, from: "Geometric group theory" (editors M Bestvina, M Sageev, K Vogtmann), IAS/Park City Math. Ser. 21, Amer. Math. Soc. (2014) 7 | DOI

[91] M Sageev, D T Wise, Cores for quasiconvex actions, Proc. Amer. Math. Soc. 143 (2015) 2731 | DOI

[92] A Sale, T Susse, Outer automorphism groups of right-angled Coxeter groups are either large or virtually abelian, Trans. Amer. Math. Soc. 372 (2019) 7785 | DOI

[93] Z Sela, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups, II, Geom. Funct. Anal. 7 (1997) 561 | DOI

[94] H Servatius, Automorphisms of graph groups, J. Algebra 126 (1989) 34 | DOI

[95] J R Stallings, Topology of finite graphs, Invent. Math. 71 (1983) 551 | DOI

[96] J R Stallings, Foldings of G–trees, from: "Arboreal group theory" (editor R C Alperin), Math. Sci. Res. Inst. Publ. 19, Springer (1991) 355 | DOI

[97] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417 | DOI

[98] H C Tran, Geometric embedding properties of Bestvina–Brady subgroups, Algebr. Geom. Topol. 17 (2017) 2499 | DOI

[99] M L J Van De Vel, Theory of convex structures, 50, North-Holland (1993)

[100] D T Wise, D J Woodhouse, A cubical flat torus theorem and the bounded packing property, Israel J. Math. 217 (2017) 263 | DOI

[101] R Zeidler, Coarse median structures and homomorphisms from Kazhdan groups, Geom. Dedicata 180 (2016) 49 | DOI

Cité par Sources :