On definite lattices bounded by a homology 3–sphere and Yang–Mills instanton Floer theory
Geometry & topology, Tome 28 (2024) no. 4, pp. 1587-1628.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Using instanton Floer theory, extending methods due to Frøyshov, we determine the definite lattices that arise from smooth 4–manifolds bounded by certain homology 3–spheres. For example, we show that for + 1 surgery on the (2,5) torus knot, the only nondiagonal lattices that can occur are E8 and the indecomposable unimodular definite lattice of rank 12, up to diagonal summands. We require that our 4–manifolds have no 2–torsion in their homology.

DOI : 10.2140/gt.2024.28.1587
Classification : 57R57, 57M99
Keywords: instanton, Floer homology, 4–manifolds

Scaduto, Christopher 1

1 Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY, United States, Department of Mathematics, University of Miami, Coral Gables, FL, United States
@article{GT_2024_28_4_a1,
     author = {Scaduto, Christopher},
     title = {On definite lattices bounded by a homology 3{\textendash}sphere and {Yang{\textendash}Mills} instanton {Floer} theory},
     journal = {Geometry & topology},
     pages = {1587--1628},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2024},
     doi = {10.2140/gt.2024.28.1587},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1587/}
}
TY  - JOUR
AU  - Scaduto, Christopher
TI  - On definite lattices bounded by a homology 3–sphere and Yang–Mills instanton Floer theory
JO  - Geometry & topology
PY  - 2024
SP  - 1587
EP  - 1628
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1587/
DO  - 10.2140/gt.2024.28.1587
ID  - GT_2024_28_4_a1
ER  - 
%0 Journal Article
%A Scaduto, Christopher
%T On definite lattices bounded by a homology 3–sphere and Yang–Mills instanton Floer theory
%J Geometry & topology
%D 2024
%P 1587-1628
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1587/
%R 10.2140/gt.2024.28.1587
%F GT_2024_28_4_a1
Scaduto, Christopher. On definite lattices bounded by a homology 3–sphere and Yang–Mills instanton Floer theory. Geometry & topology, Tome 28 (2024) no. 4, pp. 1587-1628. doi : 10.2140/gt.2024.28.1587. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1587/

[1] S Akbulut, T Mrowka, Y Ruan, Torsion classes and a universal constraint on Donaldson invariants for odd manifolds, Trans. Amer. Math. Soc. 347 (1995) 63 | DOI

[2] M F Atiyah, R Bott, The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. Lond. Ser. A 308 (1983) 523 | DOI

[3] S Behrens, M Golla, Heegaard Floer correction terms, with a twist, Quantum Topol. 9 (2018) 1 | DOI

[4] P J Braam, S K Donaldson, Floer’s work on instanton homology, knots and surgery, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 195 | DOI

[5] T D Cochran, R E Gompf, Applications of Donaldson’s theorems to classical knot concordance, homology 3–spheres and property P, Topology 27 (1988) 495 | DOI

[6] J H Conway, N J A Sloane, On the enumeration of lattices of determinant one, J. Number Theory 15 (1982) 83 | DOI

[7] J H Conway, N J A Sloane, Sphere packings, lattices and groups, 290, Springer (1999) | DOI

[8] S K Donaldson, Connections, cohomology and the intersection forms of 4–manifolds, J. Differential Geom. 24 (1986) 275 | DOI

[9] S K Donaldson, The orientation of Yang–Mills moduli spaces and 4–manifold topology, J. Differential Geom. 26 (1987) 397

[10] S K Donaldson, Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI

[11] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Univ. Press (1990)

[12] W Ebeling, Lattices and codes, Vieweg Sohn (1994) | DOI

[13] N D Elkies, A characterization of the Zn lattice, Math. Res. Lett. 2 (1995) 321 | DOI

[14] N D Elkies, Lattices and codes with long shadows, Math. Res. Lett. 2 (1995) 643 | DOI

[15] R Fintushel, R J Stern, Definite 4–manifolds, J. Differential Geom. 28 (1988) 133 | DOI

[16] R Fintushel, R J Stern, Instanton homology of Seifert fibred homology three spheres, Proc. Lond. Math. Soc. 61 (1990) 109 | DOI

[17] R Fintushel, R Stern, The canonical class of a symplectic 4–manifold, Turkish J. Math. 25 (2001) 137

[18] A Floer, An instanton-invariant for 3–manifolds, Comm. Math. Phys. 118 (1988) 215 | DOI

[19] A Floer, Instanton homology and Dehn surgery, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 77

[20] K A Frøyshov, On Floer homology and four-manifolds with boundary, PhD thesis, University of Oxford (1995)

[21] K A Frøyshov, Equivariant aspects of Yang–Mills Floer theory, Topology 41 (2002) 525 | DOI

[22] K A Frøyshov, An inequality for the h–invariant in instanton Floer theory, Topology 43 (2004) 407 | DOI

[23] K A Frøyshov, Monopole Floer homology for rational homology 3–spheres, Duke Math. J. 155 (2010) 519 | DOI

[24] K Fukaya, Floer homology of connected sum of homology 3–spheres, Topology 35 (1996) 89 | DOI

[25] M Furuta, Homology cobordism group of homology 3–spheres, Invent. Math. 100 (1990) 339 | DOI

[26] M Golla, C Scaduto, On definite lattices bounded by integer surgeries along knots with slice genus at most 2, Trans. Amer. Math. Soc. 372 (2019) 7805 | DOI

[27] P B Kronheimer, T S Mrowka, Embedded surfaces and the structure of Donaldson’s polynomial invariants, J. Differential Geom. 41 (1995) 573 | DOI

[28] V Muñoz, Ring structure of the Floer cohomology of Σ × S1, Topology 38 (1999) 517 | DOI

[29] Y Ni, Z Wu, Cosmetic surgeries on knots in S3, J. Reine Angew. Math. 706 (2015) 1 | DOI

[30] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179 | DOI

[31] J Rasmussen, Lens space surgeries and a conjecture of Goda and Teragaito, Geom. Topol. 8 (2004) 1013 | DOI

[32] C Scaduto, M Stoffregen, The cohomology of rank two stable bundle moduli: mod two nilpotency and skew Schur polynomials, preprint (2017)

[33] M Tange, The E8–boundings of homology spheres and negative sphere classes in E(1), Topology Appl. 202 (2016) 160 | DOI

[34] M Thaddeus, A perfect Morse function on the moduli space of flat connections, Topology 39 (2000) 773 | DOI

Cité par Sources :