Localization in Khovanov homology
Geometry & topology, Tome 28 (2024) no. 4, pp. 1501-1585.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct equivariant Khovanov spectra for periodic links using the Burnside functor construction introduced by Lawson, Lipshitz, and Sarkar. By identifying the fixed-point sets, we obtain rank inequalities for odd and even Khovanov homologies, and their annular filtrations, for prime-periodic links in S3.

DOI : 10.2140/gt.2024.28.1501
Classification : 57M25, 55P91
Keywords: Khovanov homology, periodic links, Smith inequality, localization, equivariant stable homotopy theory, Lipshitz–Sarkar Khovanov stable homotopy type, annular Khovanov homology, equivariant spectra, spectral sequence, low-dimensional topology, knot theory, odd Khovanov homology

Stoffregen, Matthew 1 ; Zhang, Melissa 2

1 Department of Mathematics, Michigan State University, East Lansing, MI, United States
2 Department of Mathematics, University of California, Davis, Davis, CA, United States
@article{GT_2024_28_4_a0,
     author = {Stoffregen, Matthew and Zhang, Melissa},
     title = {Localization in {Khovanov} homology},
     journal = {Geometry & topology},
     pages = {1501--1585},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2024},
     doi = {10.2140/gt.2024.28.1501},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1501/}
}
TY  - JOUR
AU  - Stoffregen, Matthew
AU  - Zhang, Melissa
TI  - Localization in Khovanov homology
JO  - Geometry & topology
PY  - 2024
SP  - 1501
EP  - 1585
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1501/
DO  - 10.2140/gt.2024.28.1501
ID  - GT_2024_28_4_a0
ER  - 
%0 Journal Article
%A Stoffregen, Matthew
%A Zhang, Melissa
%T Localization in Khovanov homology
%J Geometry & topology
%D 2024
%P 1501-1585
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1501/
%R 10.2140/gt.2024.28.1501
%F GT_2024_28_4_a0
Stoffregen, Matthew; Zhang, Melissa. Localization in Khovanov homology. Geometry & topology, Tome 28 (2024) no. 4, pp. 1501-1585. doi : 10.2140/gt.2024.28.1501. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1501/

[1] M Abouzaid, I Smith, Khovanov homology from Floer cohomology, J. Amer. Math. Soc. 32 (2019) 1 | DOI

[2] J F Adams, Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture, from: "Algebraic topology" (editors I Madsen, B Oliver), Lecture Notes in Math. 1051, Springer (1984) 483 | DOI

[3] R Akhmechet, V Krushkal, M Willis, Stable homotopy refinement of quantum annular homology, Compos. Math. 157 (2021) 710 | DOI

[4] R Akhmechet, V Krushkal, M Willis, Towards an sl2 action on the annular Khovanov spectrum, Adv. Math. 408 (2022) 108581 | DOI

[5] M M Asaeda, J H Przytycki, A S Sikora, Categorification of the skein module of tangles, from: "Primes and knots" (editors T Kohno, M Morishita), Contemp. Math. 416, Amer. Math. Soc. (2006) 1 | DOI

[6] D Auroux, J E Grigsby, S M Wehrli, Sutured Khovanov homology, Hochschild homology, and the Ozsváth–Szabó spectral sequence, Trans. Amer. Math. Soc. 367 (2015) 7103 | DOI

[7] D Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337 | DOI

[8] D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 | DOI

[9] A Beliakova, K K Putyra, S M Wehrli, Quantum link homology via trace functor, I, Invent. Math. 215 (2019) 383 | DOI

[10] J Bénabou, Introduction to bicategories, from: "Reports of the Midwest category seminar" (editors A Dold, B Eckmann), Lecture Notes in Math. 47, Springer (1967) 1 | DOI

[11] M Borodzik, W Politarczyk, M Silvero, Khovanov homotopy type, periodic links and localizations, Math. Ann. 380 (2021) 1233 | DOI

[12] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, 304, Springer (1972) | DOI

[13] K Boyle, Rank inequalities on knot Floer homology of periodic knots, Bull. Lond. Math. Soc. 54 (2022) 668 | DOI

[14] G E Bredon, Equivariant cohomology theories, Bull. Amer. Math. Soc. 73 (1967) 266 | DOI

[15] Y Chen, M Khovanov, An invariant of tangle cobordisms via subquotients of arc rings, Fund. Math. 225 (2014) 23 | DOI

[16] V Colin, P Ghiggini, K Honda, Equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, Proc. Natl. Acad. Sci. USA 108 (2011) 8100 | DOI

[17] G Cooke, Replacing homotopy actions by topological actions, Trans. Amer. Math. Soc. 237 (1978) 391 | DOI

[18] S R Costenoble, J P May, S Waner, Equivariant orientation theory, Homology Homotopy Appl. 3 (2001) 265 | DOI

[19] S R Costenoble, S Waner, Equivariant ordinary homology and cohomology, 2178, Springer (2016) | DOI

[20] E Dotto, K Moi, Homotopy theory of G–diagrams and equivariant excision, Algebr. Geom. Topol. 16 (2016) 325 | DOI

[21] W G Dwyer, D M Kan, J H Smith, Homotopy commutative diagrams and their realizations, J. Pure Appl. Algebra 57 (1989) 5 | DOI

[22] J P C Greenlees, J P May, Equivariant stable homotopy theory, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 277 | DOI

[23] J E Grigsby, A M Licata, S M Wehrli, Annular Khovanov homology and knotted Schur–Weyl representations, Compos. Math. 154 (2018) 459 | DOI

[24] J E Grigsby, S M Wehrli, An action of gl(1|1) on odd annular Khovanov homology, Math. Res. Lett. 27 (2020) 711 | DOI

[25] K Hendricks, A rank inequality for the knot Floer homology of double branched covers, Algebr. Geom. Topol. 12 (2012) 2127 | DOI

[26] K Hendricks, Localization of the link Floer homology of doubly-periodic knots, J. Symplectic Geom. 13 (2015) 545 | DOI

[27] K Hendricks, R Lipshitz, S Sarkar, A flexible construction of equivariant Floer homology and applications, J. Topol. 9 (2016) 1153 | DOI

[28] P Hu, D Kriz, I Kriz, Field theories, stable homotopy theory, and Khovanov homology, Topology Proc. 48 (2016) 327

[29] S Illman, Smooth equivariant triangulations of G–manifolds for G a finite group, Math. Ann. 233 (1978) 199 | DOI

[30] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 | DOI

[31] M Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002) 665 | DOI

[32] M Khovanov, L Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 | DOI

[33] M Khovanov, L Rozansky, Matrix factorizations and link homology, II, Geom. Topol. 12 (2008) 1387 | DOI

[34] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, Geom. Topol. 24 (2020) 2829 | DOI

[35] T Large, Equivariant Floer theory and double covers of three-manifolds, preprint (2019)

[36] A D Lauda, An introduction to diagrammatic algebra and categorified quantum sl2, Bull. Inst. Math. Acad. Sin. 7 (2012) 165

[37] T Lawson, R Lipshitz, S Sarkar, The cube and the Burnside category, from: "Categorification in geometry, topology, and physics" (editors A Beliakova, A D Lauda), Contemp. Math. 684, Amer. Math. Soc. (2017) 63 | DOI

[38] T Lawson, R Lipshitz, S Sarkar, Khovanov homotopy type, Burnside category and products, Geom. Topol. 24 (2020) 623 | DOI

[39] T Lawson, R Lipshitz, S Sarkar, Chen–Khovanov spectra for tangles, Michigan Math. J. 71 (2022) 401 | DOI

[40] T Lawson, R Lipshitz, S Sarkar, Khovanov spectra for tangles, J. Inst. Math. Jussieu 22 (2023) 1509 | DOI

[41] T Lidman, C Manolescu, The equivalence of two Seiberg–Witten Floer homologies, 399, Soc. Math. France (2018) | DOI

[42] T Lidman, C Manolescu, Floer homology and covering spaces, Geom. Topol. 22 (2018) 2817 | DOI

[43] R Lipshitz, S Sarkar, A Khovanov stable homotopy type, J. Amer. Math. Soc. 27 (2014) 983 | DOI

[44] R Lipshitz, D Treumann, Noncommutative Hodge-to-de Rham spectral sequence and the Heegaard Floer homology of double covers, J. Eur. Math. Soc. 18 (2016) 281 | DOI

[45] J P May, Equivariant homotopy and cohomology theory, 91, Amer. Math. Soc. (1996) | DOI

[46] J Musyt, Equivariant Khovanov homotopy type and periodic links, PhD thesis, University of Oregon (2019)

[47] P S Ozsváth, J Rasmussen, Z Szabó, Odd Khovanov homology, Algebr. Geom. Topol. 13 (2013) 1465 | DOI

[48] W Politarczyk, Equivariant Khovanov homology of periodic links, Michigan Math. J. 68 (2019) 859 | DOI

[49] L P Roberts, On knot Floer homology in double branched covers, Geom. Topol. 17 (2013) 413 | DOI

[50] S Sarkar, C Scaduto, M Stoffregen, An odd Khovanov homotopy type, Adv. Math. 367 (2020) 107112 | DOI

[51] S Sarkar, C Seed, Z Szabó, A perturbation of the geometric spectral sequence in Khovanov homology, Quantum Topol. 8 (2017) 571 | DOI

[52] P Seidel, I Smith, A link invariant from the symplectic geometry of nilpotent slices, Duke Math. J. 134 (2006) 453 | DOI

[53] P Seidel, I Smith, Localization for involutions in Floer cohomology, Geom. Funct. Anal. 20 (2010) 1464 | DOI

[54] P A Smith, Transformations of finite period, Ann. of Math. 39 (1938) 127 | DOI

[55] C Stroppel, Categorification of the Temperley–Lieb category, tangles, and cobordisms via projective functors, Duke Math. J. 126 (2005) 547 | DOI

[56] R M Vogt, Homotopy limits and colimits, Math. Z. 134 (1973) 11 | DOI

[57] M Willis, Stabilization of the Khovanov homotopy type of torus links, Int. Math. Res. Not. 2017 (2017) 3350 | DOI

[58] Y Xie, Instantons and annular Khovanov homology, Adv. Math. 388 (2021) 107864 | DOI

[59] M Zhang, A rank inequality for the annular Khovanov homology of 2–periodic links, Algebr. Geom. Topol. 18 (2018) 1147 | DOI

Cité par Sources :