Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a wall-crossing formula for categorical Donaldson–Thomas invariants on the resolved conifold, which categorifies the Nagao–Nakajima wall-crossing formula for numerical DT invariants on it. The categorified Hall products are used to describe the wall-crossing formula as semiorthogonal decompositions. A successive application of the categorical wall-crossing formula yields semiorthogonal decompositions of categorical Pandharipande–Thomas stable pair invariants on the resolved conifold, which categorify the product expansion formula of the generating series of numerical PT invariants on it.
Toda, Yukinobu 1
@article{GT_2024_28_3_a8, author = {Toda, Yukinobu}, title = {Categorical wall-crossing formula for {Donaldson{\textendash}Thomas} theory on the resolved conifold}, journal = {Geometry & topology}, pages = {1341--1407}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2024}, doi = {10.2140/gt.2024.28.1341}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1341/} }
TY - JOUR AU - Toda, Yukinobu TI - Categorical wall-crossing formula for Donaldson–Thomas theory on the resolved conifold JO - Geometry & topology PY - 2024 SP - 1341 EP - 1407 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1341/ DO - 10.2140/gt.2024.28.1341 ID - GT_2024_28_3_a8 ER -
%0 Journal Article %A Toda, Yukinobu %T Categorical wall-crossing formula for Donaldson–Thomas theory on the resolved conifold %J Geometry & topology %D 2024 %P 1341-1407 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1341/ %R 10.2140/gt.2024.28.1341 %F GT_2024_28_3_a8
Toda, Yukinobu. Categorical wall-crossing formula for Donaldson–Thomas theory on the resolved conifold. Geometry & topology, Tome 28 (2024) no. 3, pp. 1341-1407. doi : 10.2140/gt.2024.28.1341. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1341/
[1] Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013) 2349 | DOI
,[2] The étale local structure of algebraic stacks, preprint (2019)
, , ,[3] Singularities of differentiable maps, I : The classification of critical points, caustics and wave fronts, 82, Birkhäuser (1985) | DOI
, , ,[4] A category of kernels for equivariant factorizations and its implications for Hodge theory, Publ. Math. Inst. Hautes Études Sci. 120 (2014) 1 | DOI
, , ,[5] Variation of geometric invariant theory quotients and derived categories, J. Reine Angew. Math. 746 (2019) 235 | DOI
, , ,[6] Kernels for Grassmann flops, J. Math. Pures Appl. 147 (2021) 29 | DOI
, , , , ,[7] Donaldson–Thomas type invariants via microlocal geometry, Ann. of Math. 170 (2009) 1307 | DOI
,[8] Super-rigid Donaldson–Thomas invariants, Math. Res. Lett. 14 (2007) 559 | DOI
, ,[9] Semiorthogonal decomposition for algebraic varieties, preprint (1995)
, ,[10] A Darboux theorem for derived schemes with shifted symplectic structure, J. Amer. Math. Soc. 32 (2019) 399 | DOI
, , ,[11] Flops and derived categories, Invent. Math. 147 (2002) 613 | DOI
,[12] Hall algebras and curve-counting invariants, J. Amer. Math. Soc. 24 (2011) 969 | DOI
,[13] Representations of quivers, from: "Geometric methods in representation theory, I" (editor M Brion), Sémin. Congr. 24, Soc. Math. France (2012) 103
,[14] Knörrer periodicity and Bott periodicity, Doc. Math. 21 (2016) 1459 | DOI
,[15] Donaldson–Thomas invariants and flops, J. Reine Angew. Math. 716 (2016) 103 | DOI
,[16] Counting perverse coherent systems on Calabi–Yau 4–folds, Math. Ann. 385 (2023) 1379 | DOI
, ,[17] Methods of representation theory, I : With applications to finite groups and orders, Wiley (1981)
, ,[18] The critical CoHA of a quiver with potential, Q. J. Math. 68 (2017) 635 | DOI
,[19] Window shifts, flop equivalences and Grassmannian twists, Compos. Math. 150 (2014) 942 | DOI
, ,[20] Compact generators in categories of matrix factorizations, Duke Math. J. 159 (2011) 223 | DOI
,[21] Cyclic homology of categories of matrix factorizations, Int. Math. Res. Not. 2018 (2018) 3834 | DOI
,[22] Coherent analogues of matrix factorizations and relative singularity categories, Algebra Number Theory 9 (2015) 1159 | DOI
, ,[23] The derived category of a GIT quotient, J. Amer. Math. Soc. 28 (2015) 871 | DOI
,[24] Equivariant Hodge theory and noncommutative geometry, Geom. Topol. 24 (2020) 2361 | DOI
, ,[25] Combinatorial constructions of derived equivalences, J. Amer. Math. Soc. 33 (2020) 735 | DOI
, ,[26] Derived Knörrer periodicity and Orlov’s theorem for gauged Landau–Ginzburg models, Compos. Math. 153 (2017) 973 | DOI
,[27] Equivalences of derived factorization categories of gauged Landau–Ginzburg models, Adv. Math. 306 (2017) 200 | DOI
,[28] Derived categories of Quot schemes of locally free quotients, preprint (2021)
,[29] A classical model for derived critical loci, J. Differential Geom. 101 (2015) 289
,[30] A theory of generalized Donaldson–Thomas invariants, 1020, Amer. Math. Soc. (2012) | DOI
, ,[31] Relative singularity categories, II: DG models, preprint (2018)
, ,[32] Derived category of coherent sheaves on Grassmann manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984) 192
,[33] D–equivalence and K–equivalence, J. Differential Geom. 61 (2002) 147
,[34] Birational geometry and derived categories, from: "Surveys in differential geometry" (editors H D Cao, J Li, R M Schoen, S T Yau), Surv. Differ. Geom. 22, International (2018) 291
,[35] On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999) 1 | DOI
,[36] Moduli of representations of finite-dimensional algebras, Q. J. Math. 45 (1994) 515 | DOI
,[37] Cohomological DT/PT correspondence for the resolved conifold, in preparation
,[38] Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, preprint (2008)
, ,[39] Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 5 (2011) 231 | DOI
, ,[40] Birational geometry of moduli spaces of perverse coherent sheaves on blow-ups, Math. Z. 299 (2021) 2379 | DOI
,[41] Gromov–Witten theory and Donaldson–Thomas theory, I, Compos. Math. 142 (2006) 1263 | DOI
, , , ,[42] Donaldson–Thomas invariants versus intersection cohomology of quiver moduli, J. Reine Angew. Math. 754 (2019) 143 | DOI
, ,[43] Motivic Donaldson–Thomas invariants of the conifold and the refined topological vertex, Adv. Math. 230 (2012) 2065 | DOI
, , , ,[44] Counting invariant of perverse coherent sheaves and its wall-crossing, Int. Math. Res. Not. 2011 (2011) 3885 | DOI
, ,[45] Perverse coherent sheaves on blow-up, I : A quiver description, from: "Exploring new structures and natural constructions in mathematical physics" (editors K Hasegawa, T Hayashi, S Hosono, Y Yamada), Adv. Stud. Pure Math. 61, Math. Soc. Japan (2011) 349 | DOI
, ,[46] Triangulated categories of singularities, and equivalences between Landau–Ginzburg models, Mat. Sb. 197 (2006) 117
,[47] Derived categories of coherent sheaves and triangulated categories of singularities, from: "Algebra, arithmetic, and geometry, II" (editors Y Tschinkel, Y Zarhin), Progr. Math. 270, Birkhäuser (2009) 503 | DOI
,[48] Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math. 226 (2011) 206 | DOI
,[49] Matrix factorizations for nonaffine LG-models, Math. Ann. 353 (2012) 95 | DOI
,[50] Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009) 407 | DOI
, ,[51] Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013) 271 | DOI
, , , ,[52] Matrix factorizations and singularity categories for stacks, Ann. Inst. Fourier (Grenoble) 61 (2011) 2609 | DOI
, ,[53] Two-dimensional categorified Hall algebras, J. Eur. Math. Soc. 25 (2023) 1113 | DOI
, ,[54] K–theoretic Hall algebras for quivers with potential, preprint (2019)
,[55] Categorical and K–theoretic Hall algebras for quivers with potential, J. Inst. Math. Jussieu 22 (2023) 2717 | DOI
,[56] Generators for K–theoretic Hall algebras of quivers with potential, Selecta Math. 30 (2024) 4 | DOI
,[57] Categorical and K–theoretic Donaldson–Thomas theory of C3, I, (2022)
, ,[58] Hilbert schemes and stable pairs : GIT and derived category wall crossings, Bull. Soc. Math. France 139 (2011) 297 | DOI
, ,[59] Non-commutative Donaldson–Thomas invariants and the conifold, Geom. Topol. 12 (2008) 1171 | DOI
,[60] Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories, C. R. Math. Acad. Sci. Paris 340 (2005) 15 | DOI
,[61] Curve counting theories via stable objects, I : DT/PT correspondence, J. Amer. Math. Soc. 23 (2010) 1119 | DOI
,[62] Curve counting theories via stable objects, II : DT/ncDT flop formula, J. Reine Angew. Math. 675 (2013) 1 | DOI
,[63] Categorical Donaldson–Thomas theory for local surfaces, preprint (2019)
,[64] Semiorthogonal decompositions for categorical Donaldson–Thomas theory via Θ–stratifications, preprint (2021)
,[65] Birational geometry for d-critical loci and wall-crossing in Calabi–Yau 3–folds, Algebr. Geom. 9 (2022) 513 | DOI
,[66] Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004) 423 | DOI
,Cité par Sources :