Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the moduli space of Gieseker stable sheaves on a smooth cubic threefold with Chern character is smooth and of dimension four. Moreover, the Abel–Jacobi map to the intermediate Jacobian of maps it birationally onto the theta divisor , contracting only a copy of to the singular point .
We use this result to give a new proof of a categorical version of the Torelli theorem for cubic threefolds, which says that can be recovered from its Kuznetsov component . Similarly, this leads to a new proof of the description of the singularity of the theta divisor, and thus of the classical Torelli theorem for cubic threefolds, ie that can be recovered from its intermediate Jacobian.
Bayer, Arend 1 ; Beentjes, Sjoerd Viktor 1 ; Feyzbakhsh, Soheyla 2 ; Hein, Georg 3 ; Martinelli, Diletta 4 ; Rezaee, Fatemeh 5 ; Schmidt, Benjamin 6
@article{GT_2024_28_1_a1, author = {Bayer, Arend and Beentjes, Sjoerd Viktor and Feyzbakhsh, Soheyla and Hein, Georg and Martinelli, Diletta and Rezaee, Fatemeh and Schmidt, Benjamin}, title = {The desingularization of the theta divisor of a cubic threefold as a moduli space}, journal = {Geometry & topology}, pages = {127--160}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2024}, doi = {10.2140/gt.2024.28.127}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.127/} }
TY - JOUR AU - Bayer, Arend AU - Beentjes, Sjoerd Viktor AU - Feyzbakhsh, Soheyla AU - Hein, Georg AU - Martinelli, Diletta AU - Rezaee, Fatemeh AU - Schmidt, Benjamin TI - The desingularization of the theta divisor of a cubic threefold as a moduli space JO - Geometry & topology PY - 2024 SP - 127 EP - 160 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.127/ DO - 10.2140/gt.2024.28.127 ID - GT_2024_28_1_a1 ER -
%0 Journal Article %A Bayer, Arend %A Beentjes, Sjoerd Viktor %A Feyzbakhsh, Soheyla %A Hein, Georg %A Martinelli, Diletta %A Rezaee, Fatemeh %A Schmidt, Benjamin %T The desingularization of the theta divisor of a cubic threefold as a moduli space %J Geometry & topology %D 2024 %P 127-160 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.127/ %R 10.2140/gt.2024.28.127 %F GT_2024_28_1_a1
Bayer, Arend; Beentjes, Sjoerd Viktor; Feyzbakhsh, Soheyla; Hein, Georg; Martinelli, Diletta; Rezaee, Fatemeh; Schmidt, Benjamin. The desingularization of the theta divisor of a cubic threefold as a moduli space. Geometry & topology, Tome 28 (2024) no. 1, pp. 127-160. doi : 10.2140/gt.2024.28.127. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.127/
[1] Moduli spaces on the Kuznetsov component of Fano threefolds of index 2, Épijournal Géom. Algébrique 6 (2022) 13 | DOI
, , ,[2] Bridgeland-stable moduli spaces for K–trivial surfaces, J. Eur. Math. Soc. 15 (2013) 1 | DOI
, ,[3] A new model for the theta divisor of the cubic threefold, Matematiche (Catania) 58 (2003) 201
, , ,[4] Algebraization of formal moduli, II : Existence of modifications, Ann. of Math. 91 (1970) 88 | DOI
,[5] Stability conditions on Kuznetsov components, Ann. Sci. Éc. Norm. Supér. 56 (2023) 517 | DOI
, , , ,[6] The space of stability conditions on abelian threefolds, and on some Calabi–Yau threefolds, Invent. Math. 206 (2016) 869 | DOI
, , ,[7] Bridgeland stability conditions on threefolds, I : Bogomolov–Gieseker type inequalities, J. Algebraic Geom. 23 (2014) 117 | DOI
, , ,[8] Les singularités du diviseur Θ de la Jacobienne intermédiaire de l’hypersurface cubique dans P4, from: "Algebraic threefolds" (editor A Conte), Lecture Notes in Math. 947, Springer (1982) 190 | DOI
,[9] Vector bundles on the cubic threefold, from: "Symposium in honor of C H Clemens" (editors A Bertram, J A Carlson, H Kley), Contemp. Math. 312, Amer. Math. Soc. (2002) 71 | DOI
,[10] The Stacks project, electronic reference (2005–)
, , ,[11] A categorical invariant for cubic threefolds, Adv. Math. 229 (2012) 770 | DOI
, , , ,[12] Stability conditions on triangulated categories, Ann. of Math. 166 (2007) 317 | DOI
,[13] Stability conditions on K3 surfaces, Duke Math. J. 141 (2008) 241 | DOI
,[14] The intermediate Jacobian of the cubic threefold, Ann. of Math. 95 (1972) 281 | DOI
, ,[15] The ample cone of moduli spaces of sheaves on the plane, Algebr. Geom. 3 (2016) 106 | DOI
, ,[16] Singularities of theta divisors and the birational geometry of irregular varieties, J. Amer. Math. Soc. 10 (1997) 243 | DOI
, ,[17] Serre-invariant stability conditions and Ulrich bundles on cubic threefolds, Épijournal Géom. Algébrique 7 (2023) 1 | DOI
, ,[18] On the moduli of vector bundles on an algebraic surface, Ann. of Math. 106 (1977) 45 | DOI
,[19] Periods of integrals on algebraic manifolds, II : Local study of the period mapping, Amer. J. Math. 90 (1968) 805 | DOI
,[20] Tilting in abelian categories and quasitilted algebras, 575, Amer. Math. Soc. (1996) | DOI
, , ,[21] Algebraic geometry, 52, Springer (1977) | DOI
,[22] Generalized divisors on Gorenstein schemes, –Theory 8 (1994) 287 | DOI
,[23] The geometry of moduli spaces of sheaves, Cambridge Univ. Press (2010) | DOI
, ,[24] Minimal sections of conic bundles, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 2 (1999) 401
,[25] Derived category of a cubic threefold and the variety V 14, Tr. Mat. Inst. Steklova 246 (2004) 183
,[26] Stability conditions on Fano threefolds of Picard number 1, J. Eur. Math. Soc. 21 (2019) 709 | DOI
,[27] Some examples of tilt-stable objects on threefolds, Comm. Algebra 44 (2016) 1280 | DOI
, ,[28] Computing the walls associated to Bridgeland stability conditions on projective surfaces, Asian J. Math. 18 (2014) 263 | DOI
,[29] Derived categories and the genus of space curves, Algebr. Geom. 7 (2020) 153 | DOI
, ,[30] Moduli of stable sheaves. I, J. Math. Kyoto Univ. 17 (1977) 91 | DOI
,[31] Moduli of stable sheaves. II, J. Math. Kyoto Univ. 18 (1978) 557 | DOI
,[32] Projective invariants of projective structures and applications, from: "Proceedings of the International Congress of Mathematicians" (editor V Stenström), Institut Mittag-Leffler (1963) 526
,[33] Prym varieties, I, from: "Contributions to analysis : a collection of papers dedicated to Lipman Bers" (editors L V Ahlfors, I Kra, B Maskit, L Nirenberg), Academic (1974) 325
,[34] The integral Hodge conjecture for two-dimensional Calabi–Yau categories, Compos. Math. 158 (2022) 287 | DOI
,[35] Some remarks on Fano threefolds of index two and stability conditions, Int. Math. Res. Not. 2022 (2022) 12940 | DOI
, ,[36] Generalized divisors and reflexive sheaves, lecture notes (2007)
,[37] Moduli of representations of the fundamental group of a smooth projective variety, I, Inst. Hautes Études Sci. Publ. Math. 79 (1994) 47
,[38] Stable vector bundles on algebraic surfaces, Nagoya Math. J. 47 (1972) 29
,[39] Abel–Jacobi isogenies for certain types of Fano threefolds, 141, Mathematisch Centrum (1981)
,[40] Bridgeland moduli spaces for Gushel–Mukai threefolds and Kuznetsov’s Fano threefold conjecture, preprint (2021)
,Cité par Sources :