Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We use explicit pseudoholomorphic curve techniques (without virtual perturbations) to define a sequence of symplectic capacities analogous to those defined recently by the second author using symplectic field theory. We then compute these capacities for all four-dimensional convex toric domains. This gives various new obstructions to stabilized symplectic embedding problems, which are sometimes sharp.
McDuff, Dusa 1 ; Siegel, Kyler 2
@article{GT_2024_28_3_a6, author = {McDuff, Dusa and Siegel, Kyler}, title = {Symplectic capacities, unperturbed curves and convex toric domains}, journal = {Geometry & topology}, pages = {1213--1285}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2024}, doi = {10.2140/gt.2024.28.1213}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1213/} }
TY - JOUR AU - McDuff, Dusa AU - Siegel, Kyler TI - Symplectic capacities, unperturbed curves and convex toric domains JO - Geometry & topology PY - 2024 SP - 1213 EP - 1285 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1213/ DO - 10.2140/gt.2024.28.1213 ID - GT_2024_28_3_a6 ER -
McDuff, Dusa; Siegel, Kyler. Symplectic capacities, unperturbed curves and convex toric domains. Geometry & topology, Tome 28 (2024) no. 3, pp. 1213-1285. doi : 10.2140/gt.2024.28.1213. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1213/
[1] A Morse–Bott approach to contact homology, from: "Symplectic and contact topology: interactions and perspectives" (editors Y Eliashberg, B Khesin, F Lalonde), Fields Inst. Commun. 35, Amer. Math. Soc. (2003) 55 | DOI
,[2] Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI
, , , , ,[3] Coherent orientations in symplectic field theory, Math. Z. 248 (2004) 123 | DOI
, ,[4] Symplectic homology, autonomous Hamiltonians, and Morse–Bott moduli spaces, Duke Math. J. 146 (2009) 71 | DOI
, ,[5] Lattice formulas for rational SFT capacities, preprint (2021)
, ,[6] Combinatorial embedded contact homology for toric contact manifolds, preprint (2016)
,[7] Symplectic hypersurfaces and transversality in Gromov–Witten theory, J. Symplectic Geom. 5 (2007) 281 | DOI
, ,[8] Punctured holomorphic curves and Lagrangian embeddings, Invent. Math. 212 (2018) 213 | DOI
, ,[9] Symplectic embeddings of products, Comment. Math. Helv. 93 (2018) 1 | DOI
, ,[10] The ghost stairs stabilize to sharp symplectic embedding obstructions, J. Topol. 11 (2018) 309 | DOI
, , ,[11] Higher symplectic capacities and the stabilized embedding problem for integral elllipsoids [sic], J. Fixed Point Theory Appl. 24 (2022) 49 | DOI
, , ,[12] Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989) 355 | DOI
, ,[13] Symplectic topology and Hamiltonian dynamics, II, Math. Z. 203 (1990) 553 | DOI
, ,[14] Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 | DOI
,[15] Soft and hard symplectic geometry, from: "Proceedings of the International Congress of Mathematicians, I" (editor A M Gleason), Amer. Math. Soc. (1987) 81
,[16] Symplectic capacities from positive S1–equivariant symplectic homology, Algebr. Geom. Topol. 18 (2018) 3537 | DOI
, ,[17] New obstructions to symplectic embeddings, Invent. Math. 196 (2014) 383 | DOI
, ,[18] J–holomorphic cylinders between ellipsoids in dimension four, J. Symplectic Geom. 18 (2020) 1221 | DOI
, ,[19] The embedded contact homology index revisited, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263 | DOI
,[20] Quantitative embedded contact homology, J. Differential Geom. 88 (2011) 231
,[21] Lecture notes on embedded contact homology, from: "Contact and symplectic topology" (editors F Bourgeois, V Colin, A Stipsicz), Bolyai Soc. Math. Stud. 26, Bolyai Math. Soc. (2014) 389 | DOI
,[22] Beyond ECH capacities, Geom. Topol. 20 (2016) 1085 | DOI
,[23] An elementary alternative to ECH capacities, Proc. Natl. Acad. Sci. USA 119 (2022) | DOI
,[24] Gluing pseudoholomorphic curves along branched covered cylinders, I, J. Symplectic Geom. 5 (2007) 43 | DOI
, ,[25] Gluing pseudoholomorphic curves along branched covered cylinders, II, J. Symplectic Geom. 7 (2009) 29 | DOI
, ,[26] The stabilized symplectic embedding problem for polydiscs, preprint (2019)
,[27] On symplectic capacities and their blind spots, J. Topol. Anal. (2023) | DOI
, ,[28] On symplectic capacities of toric domains, Involve 8 (2015) 665 | DOI
, , ,[29] A remark on the stabilized symplectic embedding problem for ellipsoids, Eur. J. Math. 4 (2018) 356 | DOI
,[30] Counting curves with local tangency constraints, J. Topol. 14 (2021) 1176 | DOI
, ,[31] Holomorphic curves in the presence of holomorphic hypersurface foliations, preprint (2019)
, ,[32] Contact homology and virtual fundamental cycles, J. Amer. Math. Soc. 32 (2019) 825 | DOI
,[33] Equivariant symplectic homology, linearized contact homology and the Lagrangian capacity, PhD thesis, Universität Augsburg (2022)
,[34] Morse homology, 111, Birkhäuser (1993) | DOI
,[35] Intersection theory of punctured pseudoholomorphic curves, Geom. Topol. 15 (2011) 2351 | DOI
,[36] Computing higher symplectic capacities, II, in preparation
,[37] Higher symplectic capacities, preprint (2019)
,[38] Computing higher symplectic capacities, I, Int. Math. Res. Not. 2022 (2022) 12402 | DOI
,[39] Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv. 85 (2010) 347 | DOI
,[40] Lectures on symplectic field theory, lecture notes (2020)
,Cité par Sources :