Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We use the Dirac operator technique to establish sharp distance estimates for compact spin manifolds under lower bounds on the scalar curvature in the interior and on the mean curvature of the boundary. In the situations we consider, we thereby give refined answers to questions on metric inequalities recently proposed by Gromov. These include optimal estimates for Riemannian bands and for the long neck problem. In the case of bands over manifolds of nonvanishing –genus, we establish a rigidity result stating that any band attaining the predicted upper bound is isometric to a particular warped product over some spin manifold admitting a parallel spinor. Furthermore, we establish scalar and mean curvature extremality results for certain log-concave warped products. The latter includes annuli in all simply connected space forms. On a technical level, our proofs are based on new spectral estimates for the Dirac operator augmented by a Lipschitz potential together with local boundary conditions.
Cecchini, Simone 1 ; Zeidler, Rudolf 2
@article{GT_2024_28_3_a5, author = {Cecchini, Simone and Zeidler, Rudolf}, title = {Scalar and mean curvature comparison via the {Dirac} operator}, journal = {Geometry & topology}, pages = {1167--1212}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2024}, doi = {10.2140/gt.2024.28.1167}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1167/} }
TY - JOUR AU - Cecchini, Simone AU - Zeidler, Rudolf TI - Scalar and mean curvature comparison via the Dirac operator JO - Geometry & topology PY - 2024 SP - 1167 EP - 1212 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1167/ DO - 10.2140/gt.2024.28.1167 ID - GT_2024_28_3_a5 ER -
Cecchini, Simone; Zeidler, Rudolf. Scalar and mean curvature comparison via the Dirac operator. Geometry & topology, Tome 28 (2024) no. 3, pp. 1167-1212. doi : 10.2140/gt.2024.28.1167. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1167/
[1] Scalar curvature rigidity for asymptotically locally hyperbolic manifolds, Ann. Global Anal. Geom. 16 (1998) 1 | DOI
, ,[2] On the index of Callias-type operators, Geom. Funct. Anal. 3 (1993) 431 | DOI
,[3] Boundary value problems for elliptic differential operators of first order, from: "Surveys in differential geometry, XVII" (editors H D Cao, S T Yau), Surv. Differ. Geom. 17, International (2012) 1 | DOI
, ,[4] Guide to elliptic boundary value problems for Dirac-type operators, from: "Arbeitstagung Bonn 2013" (editors W Ballmann, C Blohmann, G Faltings, P Teichner, D Zagier), Progr. Math. 319, Springer (2016) 43 | DOI
, ,[5] Boundary conditions for scalar curvature, from: "Perspectives in scalar curvature, II" (editors M L Gromov, J Lawson H. Blaine), World Sci. (2023) 325 | DOI
, ,[6] Elliptic boundary problems for Dirac operators, Birkhäuser (1993) | DOI
, ,[7] Infinite loop spaces and positive scalar curvature, Invent. Math. 209 (2017) 749 | DOI
, , ,[8] A spinorial approach to Riemannian and conformal geometry, Eur. Math. Soc. (2015) | DOI
, , , , ,[9] Axial anomalies and index theorems on open spaces, Comm. Math. Phys. 62 (1978) 213
,[10] A long neck principle for Riemannian spin manifolds with positive scalar curvature, Geom. Funct. Anal. 30 (2020) 1183 | DOI
,[11] Scalar curvature and generalized Callias operators, from: "Perspectives in scalar curvature, I" (editors M L Gromov, J Lawson H. Blaine), World Sci. (2023) 515 | DOI
, ,[12] Generalized soap bubbles and the topology of manifolds with positive scalar curvature, preprint (2020)
, ,[13] The mass of asymptotically hyperbolic Riemannian manifolds, Pacific J. Math. 212 (2003) 231 | DOI
, ,[14] Two index theorems in odd dimensions, Comm. Anal. Geom. 6 (1998) 317 | DOI
,[15] Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980) 117 | DOI
,[16] Scalar curvature estimates for compact symmetric spaces, Differential Geom. Appl. 16 (2002) 65 | DOI
, ,[17] Positive curvature, macroscopic dimension, spectral gaps and higher signatures, from: "Functional analysis on the eve of the 21st century, II" (editors S Gindikin, J Lepowsky, R L Wilson), Progr. Math. 132, Birkhäuser (1996) 1 | DOI
,[18] Metric inequalities with scalar curvature, Geom. Funct. Anal. 28 (2018) 645 | DOI
,[19] Four lectures on scalar curvature, preprint (2020)
,[20] No metrics with positive scalar curvatures on aspherical 5–manifolds, preprint (2020)
,[21] The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980) 423 | DOI
, ,[22] Spin and scalar curvature in the presence of a fundamental group, I, Ann. of Math. 111 (1980) 209 | DOI
, ,[23] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. Inst. Hautes Études Sci. 58 (1983) 83
, ,[24] Quantitative K–theory, positive scalar curvature, and bandwidth, from: "Perspectives in scalar curvature, II" (editors M L Gromov, J Lawson H. Blaine), World Sci. (2023) 763 | DOI
, , ,[25] Enlargeability and index theory, J. Differential Geom. 74 (2006) 293
, ,[26] Analytic K–homology, Oxford Univ. Press (2000)
, ,[27] Eigenvalue boundary problems for the Dirac operator, Comm. Math. Phys. 231 (2002) 375 | DOI
, , ,[28] Spin geometry, 38, Princeton Univ. Press (1989) | DOI
, ,[29] The positive mass theorem with arbitrary ends, preprint (2021)
, , ,[30] Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963) 7
,[31] Sharp estimates and the Dirac operator, Math. Ann. 310 (1998) 55 | DOI
,[32] Index theory for scalar curvature on manifolds with boundary, Proc. Amer. Math. Soc. 149 (2021) 4451 | DOI
,[33] Scalar curvature rigidity of asymptotically hyperbolic spin manifolds, Math. Ann. 285 (1989) 527 | DOI
,[34] Riemannian geometry, 171, Springer (2016) | DOI
,[35] Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale, Math. Ann. 79 (1919) 340 | DOI
,[36] Optimal eigenvalues estimate for the Dirac operator on domains with boundary, Lett. Math. Phys. 73 (2005) 135 | DOI
,[37] Almost rigidity of the positive mass theorem for asymptotically hyperbolic manifolds with spherical symmetry, Gen. Relativity Gravitation 49 (2017) 125 | DOI
, ,[38] On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979) 159 | DOI
, ,[39] Simply connected manifolds of positive scalar curvature, Ann. of Math. 136 (1992) 511 | DOI
,[40] Partial differential equations, I : Basic theory, 115, Springer (2011) | DOI
,[41] A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981) 381
,[42] Width, largeness and index theory, Symmetry Integrability Geom. Methods Appl. 16 (2020) 127 | DOI
,[43] Band width estimates via the Dirac operator, J. Differential Geom. 122 (2022) 155 | DOI
,[44] Nonnegative scalar curvature and area decreasing maps, Symmetry Integrability Geom. Methods Appl. 16 (2020) 033 | DOI
,[45] Rigidity results for complete manifolds with nonnegative scalar curvature, preprint (2020)
,[46] Width estimate and doubly warped product, Trans. Amer. Math. Soc. 374 (2021) 1497 | DOI
,Cité par Sources :